Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)
\(b,5x^3y^2-25x^2y^3+40xy^4\)
\(=5xy^2\left(x^2-5xy+8y^2\right)\)
\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)
\(=-2x^2y^2\left(2x-3+4x^2y\right)\)
\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)
\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)
\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)
\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)
\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)
\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(a-b-c\right)\)
\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)
\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)
\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)
a,3x3y3−15x2y2=3x2y2(xy−5)a,3x3y3−15x2y2=3x2y2(xy−5)
b,5x3y2−25x2y3+40xy4b,5x3y2−25x2y3+40xy4
=5xy2(x2−5xy+8y2)=5xy2(x2−5xy+8y2)
c,−4x3y2+6x2y2−8x4y3c,−4x3y2+6x2y2−8x4y3
=−2x2y2(2x−3+4x2y)=−2x2y2(2x−3+4x2y)
d,a3x2y−52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y
=a3x2(y−52x2+23ay)=a3x2(y−52x2+23ay)
e,a(x+1)−b(x+1)=(x+1)(a−b)e,a(x+1)−b(x+1)=(x+1)(a−b)
f,2x(x−5y)+8y(5y−x)f,2x(x−5y)+8y(5y−x)
=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)
g,a(x2+1)+b(−1−x2)−c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)
=(x2+1)(a−b−c)=(x2+1)(a−b−c)
h,9(x−y)2−27(y−x)3h,9(x−y)2−27(y−x)3
=9(x−y)2+27(x−y)3
\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x\)
Thay x=15 \(\Rightarrow A=9.15=135\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)
\(=19x^2y^2-11xy^3-8x^3\)
Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)
\(=19-44-1\)
\(=-26\)
Bài 1:
a, \(6x^2\left(3x^2-4x+5\right)=18x^4-24x^3+30x^2\)
b, \(\left(3x-y\right)^2=9x^2-6xy+y^2\)
c, \(\left(x+3\right)\left(x-3\right)-x\left(x-5\right)=x^2-9-x^2+5=-4\)
d, \(\left(x+2\right)^2+\left(x-3y\right)^2-\left(2x+4\right)\left(x-3\right)\)
\(=x^2+4x+4+x^2-6xy+9y^2-2x^2+2x+12\)
\(=9y^2+6x+16\)
Bài 2:
a, \(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)
b, \(27x^3-\dfrac{1}{27}=\left(3x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(3x-\dfrac{1}{3}\right)\left(9x^2-x+\dfrac{1}{9}\right)\)
c, \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
d, \(x^2+7x+12=x^2+3x+4x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
d. \(\left(x-3y\right)\left(3x^2+y^2+5xy\right)\)
\(=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2\)
\(=3x^3-14xy^2-4x^2y-3y^3\)
Bài 2:
a. \(x^2-y^2-5x+5y\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x+y-5\right)\left(x-y\right)\)
b. \(x^3-x^2-4x^2+8x-4\)
\(=x^2\left(x-1\right)-4\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)-4\left(x-1\right)^2\)
\(=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
Bài 3:
\(87^2+26.87+13^2\)
\(=\left(87+ 13\right)^2\)
\(=100^2\)
\(=10000\)
Bài 1:
a. \(3x^2\left(5x^2-4x+3\right)\)
\(=15x^4-12x^3+9x^2\)
b. \(-5xy\left(3x^2y-5xy-y^2\right)\)
\(=-15x^3y^2+25x^2y^2+5xy^3\)
c. \(\left(5x^2-4x\right)\left(x-3\right)\)
\(=5x^3-19x^2-4x^2+12x\)
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
a) \(3x^2y-6xy^2\)
\(=3xy\left(x-2y\right)\)
b) \(25x^2-y^2\)
\(=\left(5x\right)^2-y^2\)
\(=\left(5x-y\right)\left(5x+y\right)\)
c) \(4a^2-4a+1\)
\(=\left(2a\right)^2-2.2a+1\)
\(=\left(2a-1\right)^2\)
d) \(125-a^3\)
\(=5^3-a^3\)
\(=\left(5-a\right)\left(25+5a+a^2\right)\)
e) \(7\left(a+b\right)-14\left(a+b\right)\)
\(=7\left(a+b\right)\left(1-2\right)\)
\(=-7\left(a+b\right)\)
f) \(13\left(x-y\right)+36a\left(y-x\right)\)
\(=13\left(x-y\right)-36a\left(x-y\right)\)
\(=\left(x-y\right)\left(13-36a\right)\)
g) \(3x-3y+7xy-7x^2\)
\(=3\left(x-y\right)+7x\left(y-x\right)\)
\(=3\left(x-y\right)-7x\left(x-y\right)\)
\(=\left(x-y\right)\left(3-7x\right)\)
h) \(5x^2+5y^2-20z^2-10xy\)
\(=5\left(x^2+y^2-4z^2-2xy\right)\)
\(=5\left[\left(x^2-2xy+y^2\right)-\left(2z\right)^2\right]\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
a) A - B + C = (x2 - 4xy + 5y2 - 7x + 6y + 23) - (7x2 + 5xy - 3y2 - 8y - y + 14) + (5x2 + 9xy - 8x2 + 27x - 15 + 31)
= x2 - 4xy + 5y2 - 7x + 6y + 23 - 7x2 - 5xy + 3y2 + 8y + y - 14 + 5x2 + 9xy - 8x2 + 27x - 15 + 31
= (x2 - 7x2 + 5x2 - 8x2) + (-4xy - 5xy + 9xy) + (5y2 + 3y2) + (-7x + 27x) + (6y + 8y + y) + (23 - 14 - 15 + 31)
= -9x2 + 8y2 + 20x + 15y + 25