\(x_1,x_2,x_3\)và \(y_1,y_2,y_3\)thỏa mãn <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?

11 tháng 6 2019

1) Xét hiệu :

\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)

\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)

\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)

\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)

\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)

Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)

10 tháng 10 2019

chắc 2 bạn là một: https://olm.vn/thanhvien/perfectonedirection

11 tháng 10 2019

\(\frac{y-y_1}{y_2-y_1}=\frac{ax+b-ax_1-b}{ax_2+b-ax_1-b}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)

28 tháng 1 2019

Bạn vào câu hỏi tương tự ý , có 1 bạn tên giống hệt bạn từng trả lời rồi đấy !

28 tháng 1 2019

Bạn tham khảo nha ! Lick : https://olm.vn/hoi-dap/detail/185482794083.html

Câu hỏi của Kudo - Toán lớp 9 - Học toán với OnlineMath

Chúc bạn học tốt !

31 tháng 7 2018

bài này hình như có trong đề olympic Toán Trung Quốc 2003 

Sử dụng Cauchy-Schwarz ta có:

\(\left(ay_1+by_2+cy_3+dy_4\right)^2\le\left(ab+cd\right)\left[\frac{\left(ay_1+by_2\right)^2}{ab}+\frac{\left(cy_3+dy_4\right)^2}{cd}\right]\)\(=\frac{\left(ay_1+by_2\right)^2}{ab}+\frac{\left(cy_3+dy_4\right)^2}{cd}\)

\(=\frac{a}{b}y_1^2+\frac{b}{a}y_2^2+\frac{c}{d}y_3^2+\frac{d}{c}y_4^2+2y_1y_2+2y_3y_4\)

\(\left(ax_4+bx_3+cx_2+dx_1\right)^2 \le\left(ab+cd\right)\left[\frac{\left(ax_4+bx_3\right)^2}{ab}+\frac{\left(cx_2+dx_1\right)^2}{cd}\right]\)\(=\frac{\left(ax_4+bx_3\right)^2}{ab}+\frac{\left(cx_2+dx_1\right)^2}{cd}\)

\(=\frac{a}{b}x_4^2+\frac{b}{a}x_3^2+\frac{c}{d}x_2^2+\frac{d}{c}x_1^2+2x_1x_2+2x_3x_4\)

Đặt:  \(P=\left(ay_1+by_2+cy_3+dy_4\right)^2+\left(ax_4+bx_3+cx_2+dx_1\right)^2-2\left(\frac{a^2+b^2}{ab}+\frac{c^2+d^2}{cd}\right)\)

Từ các BĐT trên ta có:

\(P\le\frac{a}{b}y_1^2+\frac{b}{a}y_2^2+\frac{c}{d}y_3^2+\frac{d}{c}y_4^2+2y_1y_2+2y_3y_4+\frac{a}{b}x_4^2+\frac{b}{a}x_3^2+\frac{c}{d}x_2^2+\frac{d}{c}x_1^2+2x_1x_2+2x_3x_4-2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{c}\right)\)

\(=-\left(\frac{a}{b}x_1^2+\frac{b}{a}x_2^2\right)-\left(\frac{c}{d}x_3^2+\frac{d}{c}x_4^2\right)-\left(\frac{a}{b}y_4^2+\frac{b}{a}y_3^2\right)-\left(\frac{c}{d}y_2^2+\frac{d}{c}y_1^2\right)+2x_1x_2+2x_3x_4+2y_1y_2+2y_3y_4\)

\(\le-2x_1x_2-2x_3x_4-2y_4y_3-2y_2y_1+2x_1x_2+2x_3x_4+2y_1y_2+2y_3y_4=0\)

=> đpcm

9 tháng 8 2018

chuẩn nè, hôm trc thầy mk chữa, mk thấy bài này cx có ở trg đó, tks bạn nhiều nhé <3

27 tháng 6 2019

Gọi ptđt (d) có dạng: y= kx+b

Vì M(1;12)\(\in\) (d)

Thay xM= 1; yM= 12 vào (d)

\(k+b=12\Rightarrow b=12-k\)

Xét PTHĐGĐ của (d) và (P)

\(\frac{x^2}{3}=kx+b\Leftrightarrow x^2-3kx-3b=0\)

\(\Delta=9k^2+12b=9k^2-12k+144>0\forall x\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=3k\\x_1x_2=-3b=-3\left(12-k\right)=3k-36\end{matrix}\right.\)

\(\frac{y_2}{x_1}+\frac{y_1}{x_2}=\frac{\left(kx_2+b\right)x_2+\left(kx_1+b\right)x_1}{x_1x_2}=\frac{k\left(x_1+x_2\right)^2-2kx_1x_2+b\left(x_1+x_2\right)}{x_1x_2}\)

Đến đây gần xong rùi, bạn thay hệ thức Vi-ét vào rùi giải là OK