Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
x, y tỉ lệ nghịch vs 2, 3
=> 2.x=3.y=> \(x=\frac{3}{2}y\)
y, z tỉ lệ thuận với 4, 3
=> \(\frac{y}{4}=\frac{z}{3}\Rightarrow z=\frac{3}{4}y\)
Em thay vào tính nhé
\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)
=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)
=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)
=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)
=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)
Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)
\(\text{Đặt }\frac{m}{a}=\frac{n}{b}=\frac{k}{c}=l,\text{ ta có: }\)
\(m=al,n=bl,k=cl\)
\(A=\frac{alx+bly+clz}{ax+by+cz}=\frac{l\left(ax+by+cz\right)}{ax+by+cz}=l\)
Vậy..
\(2,2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\Leftrightarrow\frac{x+y}{5}=\frac{y+z}{2},\frac{y+z}{3}=\frac{x+z}{5}\)
\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{y+z-x-z}{6-10}=\frac{y-x}{-4}=\frac{x-y}{4}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)
x; y ; z lần lượt tỉ lệ với 5 ; 3 ; 2\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{36}{6}=6\)
\(\dfrac{x}{5}=6\Rightarrow x=30\\ \dfrac{y}{3}=6\Rightarrow y=18\\ \dfrac{z}{2}=6\Rightarrow z=12\)
Vậy ...
Vì x,y,z tỉ lệ với các số 2,3,4.
⇒x2=y3=z4=k⇒x2=y3=z4=k
⇒⎧⎪⎨⎪⎩x=2ky=3kz=4k⇒{x=2ky=3kz=4k
Thay x = 2k; y = 3k ; z = 4k vào M, ta được:
M=5x+2y+zx+4y−3zM=5x+2y+zx+4y−3z
M=5.(2k)+2.(3k)+4k2k+4.(3k)−3.(4k)M=5.(2k)+2.(3k)+4k2k+4.(3k)−3.(4k)
M=10k+6k+4k2k+12k−12kM=10k+6k+4k2k+12k−12k
M=20k2kM=20k2k
M=202M=202
M=10M=10
Vậy M = 10.
Vì x,y,z tỉ lệ với các số 2,3,4.
⇒\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
⇒\(\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)
Thay x = 2k; y = 3k ; z = 4k vào M, ta được:
\(M=\frac{5x+2y+z}{x+4y+3z}\)
\(=\frac{5.2k+2.3k+4k}{2k+4.3k+3.4k}=\frac{10k+6k+4k}{2k+12k+12k}\)\(=\frac{20k}{26k}=\frac{5}{9}\)
Vậy \(M=\frac{5}{9}\)