Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN a: $F= 14(a^2+b^2+c^2) + \dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}$ | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Ta có:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2b+b^2c+c^2a\right)\le\frac{\left(a^2+b^2+c^2\right)^3}{3}\le\left(a^2+b^2+c^2\right)^4\)
\(\Rightarrow a^2b+b^2c+c^2a\le\left(a^2+b^2+c^2\right)^2\)
Ta lại có:
\(ab+bc+ca=\frac{1-\left(a^2+b^2+c^2\right)^2}{2}\)
Làm tiếp.
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Đề thi tuyển sinh chuyên Khoa học tự nhiên-Đại Học quốc gia Hà Nội năm học 2017-2018
ta có: \(ab+bc+ca+abc=2\)
\(\Leftrightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)=\left(1+a\right)+\left(1+b\right)+\left(1+c\right)\)
\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)}+\frac{1}{\left(1+b\right)\left(1+c\right)}+\frac{1}{\left(1+c\right)\left(1+a\right)}=1\)
đặt \(x=\frac{1}{1+a};y=\frac{1}{1+b};z=\frac{1}{1+c}\Rightarrow xy+yz+xz=1\)
ta có \(P=\frac{a+1}{\left(a+1\right)^2+1}+\frac{b+1}{\left(b+1\right)^2+1}+\frac{c+1}{\left(c+1\right)^2+1}\)
\(=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}+\frac{\frac{1}{y}}{\frac{1}{y^2}+1}+\frac{\frac{1}{z}}{\frac{1}{z^2}+1}=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)
\(=\frac{x}{\left(x+y\right)\left(y+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+y\right)\left(z+x\right)}\)
\(=\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\frac{2}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
mà \(9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+z+zx\right)\)
\(\Leftrightarrow x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\ge6xyz\)(đúng vì theo BĐT Cosi)
\(\Rightarrow P\le\frac{2}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4\left(x+y+z\right)}\le\frac{9}{4\sqrt{3}}=\frac{3\sqrt{3}}{4}\)
(vì \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\))
Vậy \(P_{max}=\frac{3\sqrt{3}}{4}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}-1\)
Áp dụng bđt bu nhi a, ta có
\(P^2\le3\left(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\right)\)
Áp dụng bđt cô si, ta có
\(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
tương tự với mấy cái kia =>\(P^2\le\frac{3}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+a}+\frac{1}{ca+a+1}\right)\)
mà với abc =1, thì bạn sẽ chứng minh được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)
phân thức thứ 1 để nguyê, phân thức thứ 2 nhân với ab, phân thức thứ 3 nhân với b, rồi chỗ napf có abc thì thay abc=1
thì bạn sẽ chứng minh được cái kia=1
=>\(P\le\sqrt{\frac{3}{2}}\)
dâu = xảy ra <=>a=b=c=1
Dễ thấy theo AM - GM :
\(\frac{1}{\sqrt{a^2+2b^2+3}}=\frac{1}{\sqrt{\left(a^2+b\right)+\left(b^2+1\right)+2}}\le\frac{1}{\sqrt{2ab+2b+2}}\)
\(\le\frac{\sqrt{6}}{4}\left(\frac{1}{ab+b+1}+\frac{1}{3}\right)\)
Tương tự:
\(\frac{1}{\sqrt{b^2+2c^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{bc+c+1}+\frac{1}{3}\right);\frac{1}{\sqrt{c^2+2a^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{ca+a^2+1}+\frac{1}{3}\right)\)
Cộng lại ta sẽ có đpcm
Vì dễ thấy \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) với abc=1
Cần các cao nhân giải khác phương pháp SS
Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)
Ai làm được xin cảm ơn trước
#)Giải :
Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Áp dụng BĐT Cauchy :
\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)
\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)
\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)
Dấu ''='' xảy ra khi a = b = c = 1
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)