Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Viết các đa thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu
a,8x3+12x2y+6xy2+y38x3+12x2y+6xy2+y3
= (2x)3 + 3.(2x)2.y + 3.2x.y2 + y3
= ( 2x + y )3
b,x3+3x2+3x+1x3+3x2+3x+1
= x3 + 3.x2.1 + 3.x.12 + 13
=(x + 1)3
c, x3−3x2+2x−1x3−3x2+2x−1
= x3 - 3.x2.1+ 3.x.12 - 13
= (x - 1)3
d,27+27y2+9y4+y6
= 33 + 3.32.y2 + 3.3.y4 + (y2)3
= ( 3 + y2 ) 3
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}=\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\)
Áp dụng BĐT Cauchy-Schwar dạng Engel ta có:
\(\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}\)
\(=\frac{8^2}{a+b+c+d}=\frac{64}{a+b+c+d}=VP\)
\(a^2+b^2=2\left(8+ab\right)\)
=> \(a^2-2ab+b^2=16\)
=> \(\left(a-b\right)^2=16\)
=> a - b = 4 hoặc a - b = -4
Mà a < b
=> a - b < 0
=> a - b = -4
=> a = - 4 + b
Khi đó
\(P=\left(b-4\right)^2\left(-4+b\right)-b^2\left(b-1\right)-3\left(-4+b\right)\left(-4+1\right)+64\)
\(=\left(b^2-8b+16\right)\left(-4+b\right)-b^3+1-9\left(b-4\right)+64\)
\(=-4b^2+32b-64+b^3-8b^2+16b-b^3+1-9b+36+64\)
\(=-12b^2+49b+37\)
Chịu rồi! tách được thì tách không tách được chắc sai :v