Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a^2+1}{a}=x\Rightarrow x=\frac{a^2+1}{a}\ge\frac{2a}{a}=2\)
Khi đó:
\(S=\frac{5x}{2}+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{9x}{4}\ge2\sqrt{\frac{1}{x}\cdot\frac{x}{4}}+\frac{9\cdot2}{4}=1+\frac{18}{4}=\frac{11}{2}\)
Dấu "=" xảy ra tại a=1
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
Ta có \(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
\(P=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)
\(P=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(P=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
\(P=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Áp dụng bdt Cô-si ( tự làm lười lắm :>)
\(\Rightarrow P=3+2+2+2=9\)
\(\Rightarrow P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\)
GTNN của P là 9
\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(P=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\left[\left(\frac{1}{\sqrt{a}}\right)^2+\left(\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{c}}\right)^2\right]\)
Áp dụng BĐT Bunhiacopxki
\(\Rightarrow P\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)
Vậy Min P = 9 <=> a = b = c = 1
a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)
\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)
\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)
\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)
b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)
\(=4-\frac{16}{a^2+4}\)
Để M đạt giá trị lớn nhất
\(\Leftrightarrow\frac{16}{a^2+4}\)min
\(\Leftrightarrow a^2+4\)max
\(\Leftrightarrow a\)max
Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.
Biến đổi giả thiết \(2\left(a^2+b^2\right)-\left(a+b\right)=2ab\)
Mà ta có: \(2ab\le\frac{\left(a+b\right)^2}{2}\)nên \(2\left(a^2+b^2\right)-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)(*)
Theo BĐT Cauchy-Schwarz: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)nên từ (*) suy ra \(\left(a+b\right)^2-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)
Đặt \(s=a+b>0\)thì \(s^2-s\le\frac{s^2}{2}\Leftrightarrow\frac{s^2}{2}-s\le0\Leftrightarrow s^2-2s\le0\Leftrightarrow s\left(s-2\right)\le0\)
Mà \(s>0\)nên \(s-2\le0\Rightarrow s\le2\)hay \(a+b\le2\)
\(F=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{a^4}{ab}+\frac{b^4}{ab}+2020.\frac{4}{a+b}\)\(\ge\frac{\left(a^2+b^2\right)^2}{2ab}+\frac{8080}{a+b}\ge\left(\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}\right)+\frac{8072}{a+b}\)
\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{2}.\frac{4}{a+b}.\frac{4}{a+b}}+\frac{8072}{2}=4042\)
Đẳng thức xảy ra khi a = b = 1
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{1}{a^2+1}+\frac{a^2+1}{4a}\geq 2\sqrt{\frac{1}{4}}=1$
$a^2+1\geq 2a\Rightarrow \frac{9(a^2+1)}{4a}\geq \frac{9.2a}{4a}=\frac{9}{2}$
Cộng theo vế 2 BĐT trên ta có:
$\frac{1}{a^2+1}+\frac{5(a^2+1)}{2a}\geq \frac{11}{2}$
$\Leftrightarrow S\geq \frac{11}{2}$
Vậy $S_{\min}=\frac{11}{2}$ khi $a=1$