Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình chữ nhật sẽ được tạo ra khi lấy 2 đường thẳng kẻ thẳng đứng và 2 đường thẳng kẻ nằm ngang kết hợp với nhau
Số cách lấy 2 đường kẻ thẳng đứng là \(C^2_6=15\left(cách\right)\)
Số cách lấy 2 đường kẻ nằm ngang là: \(C^2_5=10\left(cách\right)\)
Số hình chữ nhật tạo thành là \(15\cdot10=150\left(hình\right)\)
Nguyễn Văn Tiến
Cứ mỗi cách chọn 2 đường thẳng thẳng đứng và 2 đường thẳng nằm ngang cho ta 1 hình chữ nhật, suy ra số hình chữ nhật có được là
C26.C25=150 hình chữ nhật
hoán vị, tổ hợp. chỉnh hợp...cho hỏi bạn có phải hsg ko ms giải bài này
k phải hsg đâu bạn
do mik nghỉ dịch k có gì làm nên tìm hiểu lấy kiến thức
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
Bài 1:
Trường hợp 1: a=3k+1
\(A=a^2-1=\left(3k+1\right)^2-1=9k^2+6k+1-1=9k^2+6k=3\left(3k^2+2k\right)⋮3\)
Trường hợp 2: a=3k+2
\(A=\left(3k+2\right)^2-1\)
\(=\left(3k+2+1\right)\left(3k+2-1\right)\)
\(=3\left(k+1\right)\left(3k+1\right)⋮3\)