\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

a) rút gọn

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

Ta có:

A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

A = \(\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

A = \(\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

A = \(\frac{\left(a^2+a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)

A = \(\frac{a^2+a-1}{a^2+a+1}\)

2 tháng 2 2018

Ta có \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1-2a-2}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1}{a^3+2a^2+2a+1}-\frac{2a-2}{a^3+2a^2+2a+1}\)

\(=1-\frac{2a-1}{a^3+2a^2+2a+1}\)

5 tháng 4 2016

tên kì lạ

11 tháng 4 2017

Giải:Ta có:\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(=>A=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}\)

\(=>A=\frac{a^2+a-1}{a^2+a+1}\)

\(=>A=\frac{-1}{1}\)

tk gium minh nha neu thay dung nha!

8 tháng 4 2016

Đặt biểu thức là A.

Ta có:

\(\frac{\left(a^3+a^2\right)+\left(a^2+1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\).

8 tháng 4 2016

=1+1-1 phan 1+1+1

=1 phan 3

2 tháng 5 2016

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)

\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Vậy \(A=\frac{a^2+a-1}{a^2+a+1}\)

2 tháng 5 2016

1 8892219

17 tháng 1 2016

=\(\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)