\(\in\)đường tròn tâm K:AB=CD.

Chứnngg minh rằng:

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

a, xét tam giác akb và tam giác akc có 

ab=ac(gt)

kb=kc(gt)

ak chung

=>tam giác akb=tam giác akc có (c.c.c)

26 tháng 11 2018

a, xét tam giác akb và tam giác akc có

ab=ac(gt)

kb=kc(gt)

ak chung

=> tam giác akb = tam giác akc có (c.c.c)

1 tháng 12 2018

hình bạn tự vẽ nha

a) \(\Delta ABC\)\(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)

vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)

vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)

từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)

xét tam giác BCD và tam giác CBE có:

\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)

\(\stackrel\frown{B}=\stackrel\frown{C}\)

BC chung

\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)

b) \(\Delta BOC\)\(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)

c) xét \(\Delta AOB\)\(\Delta AOC\)

AO chung

AB=AC

\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)

\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)

\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)

\(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)

\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)

Xét \(\Delta OAK\)\(\Delta OAH\)có:

\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)

\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)

OA chung

\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)

\(\Rightarrow OH=OK\)

nếu sai ở đâu mong bạn bỏ qua cho nhaok

19 tháng 11 2019

What grade are you in?

a) Xét \(\Delta AKB\)và \(\Delta AKC\)có:

          AB = AC (gt)

          AK là cạnh chung

          KB = KC (gt)

\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right)\)

b) Ta có:  \(\Delta AKB=\Delta AKC\)(theo a)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}\)(2 góc tương ứng)

Mà \(\widehat{AKB}+\widehat{AKC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp BC\)

c) Ta có: \(\hept{\begin{cases}EC\perp BC\\AK\perp BC\end{cases}\Rightarrow EC//AK}\)

25 tháng 3 2019

Bạn tự vẽ hình nha

a) Ta có:\(AK\perp HC\\ EH\perp HC\Rightarrow AK//EH\)

nên  \(\widehat{BEA}=\widehat{KAC}\)(2 góc đồng vị)

Mà \(\widehat{BAE}=\widehat{CKA}\left(=90^0\right)\)

\(\Rightarrow\widehat{EBA}=\widehat{ACK}\)

b)Xét \(\Delta\)IBA và \(\Delta\)KCA có:\(\hept{\begin{cases}\widehat{IBA}=\widehat{KCA}\left(cmt\right)\\\widehat{BAE}=\widehat{CKA}=90^0\\AB=AC\left(gt\right)\end{cases}}\)

Suy ra đpcm

c) Theo b ta có được IA =AK

mà \(\widehat{HIA}=\widehat{IHK}=\widehat{HKA}=90^0\)

nên IHKA là hình vuông

nên HA là phân giác IHK (tính chất nha)

hay HA là phân giác EHC

19 tháng 8 2017

A B C K I H

Vì AB vuông với AC ; HK vuông với AC => AB // HK 

b) AH là đường trung trực của KI => tam giác AKI cân hoặc chúng minh tam giác AHI = tam giác AHK 

c) Ta có : góc BAK + góc KAH = 90 

mà KAH + HKA = 90 độ

nên BAK = HKA mà HKA = AIK => AIK = BAK

d) Vì AKH = AIH => KAH = IAH ( 90 - AKH = 90 - IAH) 

Xét tam giác AIC và tam giác AKC ta có :

Ak = AI (cmt)

AC chung

KAH = IAH (cmt)

=> tam giác AIC = tam giác AKC