Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta DAC\)và \(\Delta BAE\) có:\(DA=BA;\widehat{DAC}=\widehat{EAB}\left(=60^0+\widehat{BAC}\right);AC=AE\Rightarrow\Delta DAC=\Delta BAE\left(c.g.c\right)\Rightarrow\widehat{DCA}=\widehat{AEB}\)
Ta có:
\(\widehat{BIC}=\widehat{IEC}+\widehat{ECI}=\widehat{IEC}+\left(\widehat{ICA}+\widehat{ACE}\right)=\left(\widehat{IEC}+\widehat{AEI}\right)+\widehat{ACE}=\widehat{AEC}+\widehat{ACE}=60^0+60^0=120^0\)(Vì \(\widehat{AEB}=\widehat{ACI}\))
\(\Rightarrow\widehat{KIB}=60^0\Rightarrow\Delta KIB\)là tam giác đều \(\Rightarrow\widehat{KBI}=\widehat{BKI}=\widehat{BIK}=60^0;KB=IB\).
Ta có:\(\widehat{KBD}=\widehat{ABD}-\widehat{ABK}=60^0-\widehat{ABK}=\widehat{KBI}-\widehat{KBA}=\widehat{ABI}\)
Xét \(\Delta DKB\) và \(\Delta AIB\) có: \(DB=AB;\widehat{DBK}=\widehat{ABI}\left(cmt\right);KB=IB\Rightarrow\Delta DKB=\Delta AIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{BIA}=\widehat{DKB}=180^0-60^0=120^0\)
\(\Rightarrow\widehat{AIE}=\widehat{AID}=120^0-60^0=60^0\) hay IA là phân giác \(\widehat{DIE}\).
Sai đề rồi bạn.D,E phải nằm ở nửa mặt phẳng nào chứ???
a) (Nếu cj biết vẽ hình rồi thì thôi nha chị, còn nếu chị chưa vẽ được hình thì chị có thể nhắn tin với em ạ )
Ta có : tam giác ABE và tam giác ADC có :
AB = AD
AC=AE
góc DAC = góc BAE ( cũng = góc BAC t60 độ )
=> tam giác ABE = tam giác ADC ( c . g . c )
=> góc AEB = góc ACD ( 2 góc tương ứng) ; BE = CD
Gọi F là tia đối tia BI sao cho DI=IF
=> tam giác DIF đều do góc DIB = 60 độ
Xét tam giác DBF và tam giác DAI có :
DF = DI , DB = DA , góc FDB = góc IDA = 60 độ - góc BDI
Vậy ta có : ID = IF = IB + FB = IB + IA ( đpcm )
b) Ta có : AM2 = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)
Áp dụng định lí cosin trong tam giác ABM ta có :
AM2 =BA2 + BM2 -2.BA . BM .cos B
= AB2 + BM2 -2.AB . BM . \(\frac{AB^2+BC^2-AC^2}{2.AB.BC}\)
= AB2 + \(\frac{BC^2}{4}-2.BM.\frac{AB^2+BC^2-AC^2}{2.2.BM}\)
= \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)
<=> AB2 + AC2 =2.AM2 + \(\frac{BC^2}{2}\)
a, Xét tam giác ABE và tam giác ADC có:
AB = AD
góc BAE = góc DAC
AE=AC
==> tam giác ABE = tam giác ADC ( c.g.c )
a, xét tam giác ABE và tam giác ADE có : AE chung
AB = AD (Gt)
^DAE = ^BAE do AE là pg của ^BAC (gt)
=> tam giác ABE = tam giác ADE (c-g-c)
b, AB = AD (gt)
=> tam giác ABD cân tại A (đn)
c, đề sai