K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

1.chứng minh đoạn nối điểm ấy với đỉnh của tam giác cân là 1 trong 4 đường (cao,phân giác, trung trực, trung tuyến)

2.chứng minh tam giác ấy có 2 cạnh(góc) bằng nhau, 2 trong 4 đường (cao,phân giác, trung trực, trung tuyến) ứng với 1 cạnh là trùng nhau,...

27 tháng 4 2019

2. cách c/m 1 t.giác là t.giác cân

-c/m 2 cạnh hoặc 2 góc của tam giác đó = nhau

-c/m tam giác có 2 góc =60 độ

-tam giác có đường trung tuyến kẻ từ đỉnh là trung trực(phân giác,đg cao)

-tam giác có đg trung trực kẻ từ đỉnh

-tam giác có p/g kẻ từ đỉnh là đg cao(trung trực,trung tuyến)

-

18 tháng 9 2019

19 tháng 9 2023

a) Kẻ đường trung trực của đoạn thẳng BC, cắt BC tại D

Ta có: Tam giác ABC cân nên AB = AC

\( \Rightarrow A\)thuộc đường trung trực của cạnh BC (t/c)

\( \Rightarrow AD\)là đường trung trực của BC.

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

AB = AC (gt)

BD = CD (gt)

AD: cạnh chung

\( \Rightarrow \Delta ABD = \Delta ACD\left( {c - c - c} \right)\)

\( \Rightarrow \widehat {BAD} = \widehat {CAD}\)

\( \Rightarrow \)AD là tia phân giác góc BAC.

Vậy tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.

b)

Ta có: Điểm cách đều ba đỉnh của tam giác là giao điểm ba đường trung trực của tam giác đó.

Tam giác ABC đều nên AB = BC = CA

Tam giác ABC cân tại A có AN là đường trung tuyến

\( \Rightarrow \) AN là đường phân giác xuất phát từ đỉnh A (cm ở ý a)

Tương tự: BP, CM lần lượt là đường phân giác xuất phát từ B và C của tam giác ABC

Mà AN cắt BP tại G

\( \Rightarrow G\) là giao điểm ba đường phân giác của tam giác ABC

\( \Rightarrow G\) cách đều ba cạnh của tam giác ABC (Tính chất

25 tháng 1 2017

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vì G, I cùng thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 nên A, G, I thẳng hàng

11 tháng 1 2019

I nằm trong tam giác và cách đều ba cạnh của tam giác nên MI là tia phân giác của góc M.

Do tam giác MNP cân tại M nên đường giác MI cũng là đường trưng tuyến.

G là trọng tâm của tam giác MNP nên G nằm trên MI.

Từ đó, suy ra M,G, I thẳng hàng.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

DO đó: ΔABH=ΔACH

b: Xét ΔEDH vuông tại D và ΔEDC vuông tại D có 

ED chung

HD=CD

Do đó: ΔEDH=ΔEDC

11 tháng 5 2022

có câu c ko bạn 

 

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

=>AM là phân giác của góc BAC

b: MB=MC

NB=NC

=>MN là trung trực của BC(1)

c: AB=AC

=>A nằm trên trung trực của BC(2)

Từ (1), (2) suy ra A,M,N thẳng hàng

19 tháng 4 2017

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN

Ta có GB = 12BM; GC = 23CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=> BAG^=CAG^ => G thuộc phân giác của BAC^

Mà ∆ABI = ∆ACI (c.c.c)

=> BAI^=CAI^ => I thuộc phân giác của BAC^

Vì G, I cùng thuộc phân giác của BAC^ nên A, G, I thẳng hàng

19 tháng 4 2017

Hướng dẫn:

a) Căn cứ các kí hiệu đã cho trên hình của bài 39 ta có: ∆ABD và ∆ACD có:

AB = AC

ˆBAD=ˆCADBAD^=CAD^

AD là cạnh chung

=> ∆ABD = ∆ACD

b) Vì ∆ABD = ∆ACD

=> BD = CD => ∆BCD cân tại D

=> ˆDBC=ˆDCB

a: Xét ΔBEA và ΔBEC có

BE chung

EA=EC

BA=BC

=>ΔBEA=ΔBEC

b: góc DBE=góc EBC

góc DEB=góc EBC

=>góc DBE=góc DEB

=>ΔDBE cân tại D

Xét ΔABC có

E là trung điểm của AC

ED//BC

=>D là trung điểm của AB

c: Xét tứ giác KBEA có

D là trung điểm chung của KE và BA

góc BEA=90 độ

=>KBEA là hcn

=>KB vuông góc BE