Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, -( -a + c - d) - ( c - d + d) = a - c + d - c + d - d = a + d
b, - ( a+b-c+d) + (a-b-c-d) = -a -b+c-d + a-b-c-d = -2b + (-2c)= -2(b+c)
a. Ta có :
(b + c + d)+(a + c + d)+(a + b + d)+(a + b + c) = 3(a + b + c + d)
⇒3(a + b + c + d)=1+2+3+4=10
⇒a + b + c + d = \(\dfrac{10}{3}\)
⇒a = (a + b + c + d) - (b + c + d) =\(\dfrac{10}{3}\) - 1= \(\dfrac{7}{3}\)
Tương tự ,ta có :
b = \(\dfrac{10}{3}\) - 2= \(\dfrac{4}{3}\) ; c = \(\dfrac{10}{3}\) - 3= \(\dfrac{1}{3}\)
và d = \(\dfrac{10}{3}\) - 4= \(-\dfrac{2}{3}\)
Vậy các số a,b,c,d lần lượt là \(\dfrac{7}{3}\) ;\(\dfrac{4}{3}\) ;\(\dfrac{1}{3}\) và \(-\dfrac{2}{3}\)
Ý b) tương tự như trên.
b. Ta cho: a+b+c+d=1(1)
a+c+d=5(2)
a+b+d=3(3)
a+b+c=6(4)
Từ (1) và (2) suy ra: \(b=1-5=-4\left(5\right)\)
Từ (1) và (3) suy ra: \(c=1-3=-2\left(6\right)\)
Từ (1) và (4) suy ra:\(d=1-5=-5\left(7\right)\)
Từ (5);(6) và (7) suy ra:\(a=1-\left[\left(-4\right)+\left(-2\right)+\left(-5\right)\right]\)
\(=1-\left(-11\right)\)
\(=1+11\)
\(=12\)
Vậy....
Theo đầu bài ta có:
( a + b + c + d ) - ( a + c + d ) = b => b = 1 - 2 = -1
( a + b + c + d ) - ( a + b + d ) = c => c = 1 - 3 = -2
( a + b + c + d ) - ( a + b + c ) = d => d = 1 - 4 = -3
1 - ( b + c + d ) = a => a = 1 - ( -1 + -2 + -3 ) = 7
a + b + c + d = 1
a + c + d = 2
=>(a + b + c + d)-(a + c + d)=b=1-2=-1
a + b + c + d = 1
a + b + d = 3
=> (a + b + c + d)-(a + b + d)=c=1-3=-2
a + b + c + d = 1
a + b + c = 4
=>(a + b + c + d)-(a + b + c)=d=1-4=-3
a + b + c + d = 1
b+c+d=-1+(-2)+(-3)=-6
=>(a + b + c + d )-(b+c+d)=1-(-6)=7=a
\(\text{ (a-b+c)-(a+c)}=a-b+c-a-c=\left(a-a\right)-b+\left(c-c\right)=-b\)
\(\left(a+b\right)-\left(b-a\right)+c=a+b-b+a+c=2a+c\)
\(-\left(a+b-c\right)+\left(a-b-c\right)=-a-b+c+a-b-c=-2b\)
\(a\left(b+c\right)-a\left(b+d\right)=ab+ac-ab+ad=ac+ad=a\left(c+d\right)\)
\(a\left(b-c\right)+a\left(d+c\right)=a\left(b-c+d+c\right)=a\left(b+d\right)\)
- a-c+d-c+d-d=a-2c+d
- -a-b+c-d+a -b-c-d=-2b-2d
- ab-ac-ad-ab-ac+ad=-2ab-2ac
- ac+ad+bc+bd-ab-ac-bd-cd=ad+bc+bd-ab-bd-cd
ta nhân lần lượt a,b,c,d vào biểu thức ban đầu , được
\(\hept{\begin{cases}\frac{a^2}{b+c+d}+\frac{ba}{a+c+d}+\frac{ac}{a+b+d}+\frac{ad}{a+b+c}=a\left(1\right)\\\frac{ab}{b+c+d}+\frac{b^2}{a+c+d}+\frac{cb}{a+b+d}+\frac{db}{a+b+c}=b\left(2\right)\end{cases}}\)
\(\hept{\begin{cases}\frac{ac}{b+c+d}+\frac{bc}{c+a+d}+\frac{c^2}{a+b+d}+\frac{dc}{a+b+c}=c\left(3\right)\\\frac{ad}{b+c+d}+\frac{bd}{a+c+d}+\frac{cd}{a+b+d}+\frac{d^2}{a+b+c}=d\left(4\right)\end{cases}}\)
Lấy (1)+(2)+(3)+(4) ta có :
\(\left(\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\right)+\frac{ab+bc+bd}{c+d+a}+\frac{ac+bc+cd}{d+a+b}\)
\(+\frac{ad+bd+cd}{a+b+c}+\frac{ab+ac+ad}{b+c+d}=a+b+c+d\)
\(< =>A+\frac{b\left(c+d+a\right)}{c+d+a}+\frac{d\left(a+b+c\right)}{a+b+c}+\frac{c\left(b+d+a\right)}{b+d+a}+\frac{a\left(c+b+d\right)}{c+b+d}=a+b+c+d\)
\(< =>A+a+b+c+d=a+b+c+d=>A=0\)
Vậy \(A=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}=0\)
1, a(b+c)-b(a-c)=(a+b)c
\(ab+ac-ba+bc=\left(a+b\right)c\)
\(a.\left(b-b\right)+\left(a+b\right).c=\left(a+b\right)c\)
\(a.0+\left(a+b\right)c=\left(a+b\right)c\)
\(\left(a+b\right)c=\left(a+b\right)c\)
\(\Rightarrowđpcm\)
2, a(b-c)-a(b+d)=-a(c+d)
\(ab-ac-ab-ad=a.\left(c+d\right)\)
\(a.\left(b-c-b-d\right)=a\left(-c-d\right)\)
\(a.\left(-c-d\right)=a.\left(-c-d\right)\)
\(\Rightarrowđpcm\)
3, (a+b)(c+d)-(a+d)(b+c)=(a-c)(d-b)
=ac+ad+bc+bd-ab-ac-bd-dc
=ad-ab+bc-dc
=(ad-ab)+(bc-dc)
=a(d-b)+c(b-d)
=a(d-b)-c(d-b)
=(a-c)(d-b) =VP.
\(\Rightarrowđpcm\)
học tốt
1,a.(b+c)-b.(a-c)
=a.b+a.c-(b.a-b.c)
=a.b+a.c-b.a+b.c
=(a.b-b.a)+(a.c+b.c)
=0+c.(a+b)=c.(a+b)
2)a.(b-c)-a.(b+d)
=a.b-a.c-(a.b+a.d)
=a.b-a.c-a.b-a.d
=(a.b-a.b)-a.c-a.d
=0-a.c-a.d
=-a.c-a.d
=-a.c+(-a.d)
=-a.(c+d)
3)(a+b).(c+d)-(a+d).(b+c)
=a.c+a.d+a.c+a.d-(a.b+a.c+d.b+d.c)
=a.c+a.d+a.c+b.d-a.b-a.c-d.b-d.c
=(a.c-a.c)+(b.d-d.b)+a.d+a.c-a.b-d.c
=0+0+(a-c).(d-b)
=(a-c).(d-b)
1) a( b+c) - b(a-c) = ( a+b) c
VT = a( b+c) - b(a-c)
= ab + ac - ab + bc
= ac + bc
= c(a + b) (=VP)
2)a (b - c)- a (b+d)= - a (c+d)
VT= a (b - c)- a (b+d)
= ab - ac - ab - ad
= -ac - ad
= -a(c + d) (=VP)