Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (4x2 + y2).[(2x)2 - y2] = (4x2 +y2)(4x2 - y2) = (4x2)2 _ (y2)2 = 16x4 - y4
\(a,3x^2+2x-1\)
\(\Leftrightarrow3x^2+3x-x-1\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)\)
\(b,x^3+6x^2+11x+6\)
\(\Leftrightarrow x^3+3x^2+3x^2+9x+2x+6\)
\(\Leftrightarrow x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+6\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+2\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
\(c,x^4+2x^2-3\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+3x^2-3\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)+3\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+3x+3\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
\(d,ab+ac+b^2+2bc+c^2\)
\(\Leftrightarrow a\left(b+c\right)+\left(b+c\right)^2\)
\(\Leftrightarrow\left(b+c\right)\left(a+b+c\right)\)
3x^2+2x-1=3x^2+3x-x-1=3x(x+1)-(x+1)=(x+1)(3x-1)
x^4+2x^2-3=x^4+3x^2-x^2 -3=x^2(x^2+3)-(x^2+3)=(x^2+3)(x^2-1)
a) \(x^4-x^2+3=\left[\left(x^2\right)^2-2\cdot x^2\cdot\frac{1}{2}+\frac{1}{4}\right]+\frac{11}{4}=\left(x^2-\frac{1}{2}\right)^2+\frac{11}{4}>0\)
=>đpcm
b) \(x^2-x+1=\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=>đpcm
c) \(x^2+x+2=\left(x^2+2\cdot x+\frac{1}{2}+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=>đpcm
d) \(\left(x+3\right)\left(x-11\right)+20\)
\(=x^2-11x+3x-33+20\)
\(=x^2-8x-13\)
\(=\left(x^2-8x+16\right)-29=\left(x+4\right)^2-29\)
Xem lại đề