Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
o a b c
Vì trên cùng một nửa mặt phẳng bờ chứa tia oa có góc aoc > góc aob ( 110o> 45o)
\(\Rightarrow\) Tia ob nằm giữa hai tia oc và ob
Theo đề bài ta có :
\(A=\frac{n+1}{n-1}=\frac{1}{2}\)
\(\Leftrightarrow2\left(n+1\right)=n-1\)
\(\Leftrightarrow2n+2=n-1\)
\(\Leftrightarrow2n-n=-1-2\)
\(\Rightarrow n=-3\)
Vậy với n = - 3 thì A = \(\frac{1}{2}\)
Một đường thẳng cắt 2016 đường thẳng còn lại tạo ra 2016 giao điểm. Mà có 2016 đường thẳng\(\Rightarrow\) có 2016.2017 giao điểm, nhưng mỗi giao điểm được tính 2 lần\(\Rightarrow\) số giao điểm thực tế là:
\(\dfrac{2016.2017}{2}=\text{2033136}\) (giao điểm)
Gọi số giao điểm cần tìm là n. Ta có:
Cứ 1 đường thẳng ta tạo được 2016 giao điểm. Vậy cứ 2017 đường thẳng ta tạo được 2017 . 2016 giao điểm. Vì số giao điểm được tính 2 lần nên:
Số giao điểm ta vẽ được là:
( 2017. 2016 ) : 2 = 2033136 ( giao điểm )
\(A=3+\dfrac{3}{2}+\dfrac{3}{2^2}+....+\dfrac{3}{2^9}\)
\(2A=2\left(3+\dfrac{3}{2}+\dfrac{3}{2^2}+....+\dfrac{3}{2^9}\right)\)
\(2A=6+3+\dfrac{3}{2}+...+\dfrac{3}{2^8}\)
\(2A-A=\left(6+3+\dfrac{3}{2}+...+\dfrac{3}{2^8}\right)-\left(3+\dfrac{3}{2}+...+\dfrac{3}{2^9}\right)\)
\(A=6-\dfrac{3}{2^9}\)
Đặt A=3+3/2+3/2^2+...+3/2^9
A=3.(1/2+1/2^2+...+1/2^9)
Đặt B=1/2+1/2^2+...+1/2^9
=>B.2=1+1/2+1/2^2+...+1/2^8
=>2B-B=(1+1/2+...+1/2^8)-(1/2+1/2^2+...+1/2^9)
=>B=1-1/2^9
=>B=512/512-1/512
=>B=511/512
=>A=3.511/512
=>A=1533/512
Vậy A=1533/512
Ta có \(A=3+3^2+3^3+3^4+....+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=4.3+4.3^3+...+4.3^{59}\)
\(=4.\left(3+3^3+...+3^{59}\right)⋮4\)
\(\Rightarrow A⋮4\)
13 ; 26 ; 52 cũng tương tự nha bạn!!
Bài 2: Có tất cả:
(6 . 5) : 2 = 15 (đường thẳng)
Bài 3: Có 6 điểm như trên bài 2.
Bài 4:Theo đề, ta có:
\(\left[n.\left(n-1\right)\right]:2=21\)
\(n.\left(n-1\right)=42\)
\(n.\left(n-1\right)=6.7\Rightarrow n=6\)
~ Học tốt ~