Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xy+14+2y+7x=-5
<=>x(y+7)+2(y+7)=-5
<=>(x+2)(y+7)=-5
=>x+2 và y+7 thuộc Ư(5)
Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
y+7 | -5 | 5 | -1 | 1 |
x | -1 | -3 | 3 | -7 |
y | -12 | -2 | -8 | -6 |
Vậy...
b, xy+x+y=2
<=>x(y+1)+(y+1)=3
<=>(x+1)(y+1)=3
=>x+1 và y+1 thuộc Ư(3)
Ta có bảng:
x+1 | 1 | -1 | 3 | -3 |
y+1 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 2 | -4 | 0 | -2 |
Vậy...
c, xy-1=3x+5y+4
<=>xy-3x-5y=4+1
<=>x(y-3)-5y+15=5+15
<=>x(y-3)-5(y-3)=20
<=>(x-5)(y-3)=20
=>x-5 và y-3 thuộc Ư(20)
Ta có bảng:
x-5 | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
y-3 | 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 6 | 4 | 7 | 3 | 9 | 1 | 10 | 0 | 15 | -5 | 25 | -15 |
y | 23 | -17 | 13 | -7 | 8 | -2 | 7 | -1 | 5 | 1 | 4 | 2 |
Vậy...
\(a,A=5x+8xy+5y=(5x+5y)+8xy\)
\(=5(x+y)+8xy\)
\(=5\cdot\frac{2}{5}+8\cdot(-1)=2+(-8)=-6\)
\(b,B=2xy+7xyz-2xz\)
\(=2\cdot\frac{3}{7}y+7\cdot\frac{3}{7}yz-2\cdot\frac{3}{7}z\)
\(=\frac{6}{7}y+3yz-\frac{6}{7}z\)
\(=\frac{6}{7}y+3\cdot(-1)-\frac{6}{7}z\)
\(=\frac{6}{7}y+(-3)-\frac{6}{7}z\)
Làm nốt :v
a)
A=\(5\left(x+y\right)+8xy\)
\(=5.\frac{2}{5}+8.\left(-1\right)\)
\(=2-8\)
\(=-6\)
Vậy.......
hc tốt
bn ơi
bn nên đợi 1
năm nữa mình tra
lời cho còn
bây giờ mình mới học lớp 6
1) Ta có \(\hept{\begin{cases}\left|x\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|x\right|+\left|y-2\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy x = 0 ; y = 2
Thay x = 0 ; y = 2 vào B
=> B = 2.0 - 5.2 + 7.0.2 = -10
Vậy B = -10
Bài 2:
\(a)\)
\(A=\left|x-2021\right|+5\)
Ta có:
\(\left|x-2021\right|\ge0\Rightarrow\left|x-2021\right|+5\ge5\)
Dấu '' = '' xảy ra khi:
\(x-2021=0\)
\(\Leftrightarrow x=2021\)
Vậy \(MinA=5\Leftrightarrow x=2021\)
\(b)\)
\(B=\left|x-2\right|+\left|x-5\right|\)
\(B=\left|x-2\right|+\left|x-5\right|\ge\left|x-2+5-x\right|=\left|3\right|=3\)
Dấu '' = '' xảy ra khi:
\(\left(x-2\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow2\le x\le5\)
Vậy \(MinB=3\Leftrightarrow2\le x\le5\)
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
các bn giải giuo mình vs