Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Ta có: \(10^{1995}+8=...0+8=...8\)
\(10^{1995}+8=1+0...0+8=9\)(1995 c/s 0)
\(\Rightarrow10^{1995}+8⋮9\)
Vậy \(\frac{10^{1995}+8}{9}\)là số tự nhiên
3. \(\frac{10^{1995}+8}{9}=\frac{100...00+8}{9}\) (số 100...00 có 1995 chữ số 0)
\(=\frac{100...08}{9}\)(số 100...08 có 1994 chữ số 0)
Mà số 100...08 có 1 + 0 + 0 + ... + 0 + 8 = 9\(⋮\)9
\(\Rightarrow100...08⋮9\)
\(\Rightarrow\frac{100...08}{9}⋮9\)
\(\Rightarrow\frac{100...08}{9}\)có kết quả là 1 số tự nhiên.
Vậy\(\frac{10^{1995}+8}{9}\)là 1 số tự nhiên.
a) Gọi số tự nhiên nhỏ nhất cần tìm là a
Theo đề bài ta có: a=11x+6=4y+1=19z+11 (\(x;y;z\in N\))
=> a+27=11x+33=4y+28=19z+38 => a+27=11(x+3)=4(x+28)=19(z+2)
=>a+27 chia hết cho 11;4;19
Mà a nhỏ nhất => a+27 nhỏ nhất => a+27 = BCNN(11;4;19) => a+27=836 => a=809
Vậy số cần tìm là 809
Bài 1 : Giải :
Vì : a chia cho 3 dư 1 => a + 2 \(⋮\)3
a chia cho 4 dư 2 => a + 2 \(⋮\)4
a chia cho 5 dư 3 => a + 2 \(⋮\)5
a chia cho 6 dư 4 => a + 2 \(⋮\)6
=> a + 2 \(\in\) BC( 3,4,5,6 )
3 = 3
4 = 22
5 = 5
6 = 2 .3
BCNN( 3,4,5,6 ) = 22 . 3 . 5 = 60
BC( 3,4,5,6 ) = { 0;60;120;180;... }
Mà : a nhỏ nhất => a + 2 nhỏ nhất
=> a + 2 = 60
=> a = 60 - 2 = 58
Vậy số tự nhiên cần tìm là 58
Bài 2 : Giải :
\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
\(A=\frac{1.1.5.1.6.1.+1.2.5.2.6.2+1.4.5.4.6.4+1.9.5.9.6.9}{1.1.3.1.5.1+1.2.3.2.5.2+1.4.3.4.5.4+1.9.3.9.5.9}\)
\(A=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)
\(A=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
Vậy : A = 2
Bài 3: Giải :
Quy đồng tử số , ta có :
\(\frac{6}{7}=\frac{6.3}{7.3}=\frac{18}{21};\frac{9}{11}=\frac{9.2}{11.2}=\frac{18}{22};\frac{2}{3}=\frac{2.9}{3.9}=\frac{18}{27}\)
=> \(\frac{18}{21}\) số thứ nhất = \(\frac{18}{22}\) số thứ hai và = \(\frac{18}{27}\) số thứ ba .
Hay : \(\frac{1}{21}\) số thứ nhất = \(\frac{1}{22}\) số thứ hai và = \(\frac{1}{27}\) số thứ ba .
Vậy coi số thứ nhất là 21 phần bằng nhau , số thứ hai là 22 phần bằng nhau thì số thứ ba là 27 phần bằng nhau như thế .
Tổng số phần bằng nhau là :
21 + 22 + 27 = 70
Số thứ nhất là :
210 : 70 . 21 = 63
Số thứ hai là :
210 : 70 . 22 = 66
Số thứ ba là :
210 - 63 - 66 = 81
Đáp số : ...
a) Gọi số tự nhiên cần tìm là a
Ta có: a+1 chia hết cho 3
a+1 chia hết cho 4
a+1 chia hết cho 5
a+1 chia hết cho 10
\(\Rightarrow\) a+1 \(\in\) B(3;4;5;10)
Lại có: BCNN(3;4;5;10) là 60
\(\Rightarrow\) a = 59
a )
Theo bài ra: (a - 4) chia hết cho 5 => (a - 4) + 20 chia hết cho 5 => a + 16 chia hết cho 5
(a - 5) chia hết cho 7 => (a - 5) + 21 chia hết cho 7 => a + 16 chia hết cho 7
(a - 6) chia hết cho 11 => (a - 6) + 22 chia hết cho 11 => a + 16 chia hết cho 11
=> a + 16 thuộc BC(5; 7; 11)
Mà BCNN(5; 7; 11) = 385
=> a + 16 thuộc B(385) = {0; 385; 770; ...}
=> a thuộc {-16; 369; 754;...}
Vì a là số tự nhiên nhỏ nhất
=> a = 369
b ) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.\)
Ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
.....................
\(\frac{1}{2012^2}=\frac{1}{2012.2012}< \frac{1}{2011.2012}\)
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.< \frac{2011}{2012}\)
Mà \(\frac{2011}{2012}< 1\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)
\(b)\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)
\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)
\(< \)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(< \)\(1-\frac{1}{2012}\)\(=\frac{2011}{2012}< 1\)
Vậy Biểu thức \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< 1\)