Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(2021+1\right)\left[\left(2021-1\right):2+1\right]}{2}=\dfrac{2022\cdot1011}{2}=1022121\)
Lời giải:
$A=(21-23)+(25-27)+....+(2021-2023)$
$=(-2)+(-2)+...+(-2)$
Số lần xuất hiện của $-2$ là: $[(2023-21):2+1]:2=501$
$A=501(-2)=-1002$
$B=(1-2-3+4)+(5-6-7+8)+....+(1997-1998-1999+2000)$
$=0+0+0+...+0=0$
1) A = 19971999 - 19971998
=> A = 19971998.(1997-1)
=> A = 19971998 . 1996
Vậy a chia hết cho 4 (vì 1996 chia hết cho 4)
2) B = 19971998 - 19981999
Mà 19971998 là số lẻ; 19981999
=> 19971998 - 19981999 là số lẻ
Vậy đề bài sai.
Là 9 vì 19991998- 19991997= 1999(1998-1997)
= 19991
= 1999
tk nhé
\(S_2=1+\left(-3\right)+5+\left(-7\right)+...+1997+\left(-1999\right)\)
\(S_2=\left(1-3\right)+\left(5-7\right)+...+\left(1997-1999\right)\)
\(S_2=\left(-2\right)+\left(-2\right)+...+\left(-2\right)\)
Số lượng số hạng là: \(\left(1999-1\right):2+1=1000\) (số hạng)
Số lượng cặp là: \(1000:2=500\) (cặp)
\(S_2=500\cdot\left(-2\right)\)
\(S_2=-1000\)
A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)
A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)
A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\)) + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))
A = 0 + 0 +0 + 0+ ... + 0
A = 0
\(\left(\dfrac{1997}{2024}+\dfrac{2021}{1999}\right)-\left(\dfrac{1997}{2024}+\dfrac{22}{1999}\right)\)
\(=\dfrac{1997}{2024}+\dfrac{2021}{1999}-\dfrac{1997}{2024}-\dfrac{22}{1999}\)
\(=\dfrac{2021}{1999}-\dfrac{22}{1999}=\dfrac{1999}{1999}=1\)
(1997/2024+2021/1999)-(1997/2024+22/1999)
= 2021/1999/22/1999
= 1999/1999 = 1