Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1997 là A a có
1996=A-1
1998=A+1
\(A^2-\left(A-1\right)\left(A+1\right)\)
\(=A^2-\left(A^2+A-A+1\right)\)
\(=A^2-\left(A^2+1\right)\)
\(=A^2-A^2-1\)
\(=-1\)
1997*1997-1996*1998
(1996+1)*1997-1996*1998
1996*1997+1997-1996*1998
1996*(1997-1998)+1997
1996*(-1)+1997
-1996+1997=1
=>(x+1/1998+1)+(x+2/1997+1)=(x+3/1996+1)+(x+4/1995+1)
=>x+1999=0
=>x=-1999
Vào trang cá nhân của t mà xem.T vừa làm r.Lười gõ lại lắm T^T
\(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)
\(=\dfrac{x+1}{1998}+\dfrac{x+2}{1997}-\dfrac{x+3}{1996}-\dfrac{x+4}{1995}=0\)
\(=\dfrac{x+1}{1998}+1+\dfrac{x+2}{1997}+1-\dfrac{x+3}{1996}-1-\dfrac{x+4}{1995}-1=0\)
\(=\dfrac{x+1999}{1998}+\dfrac{x+1999}{1998}-\left(\dfrac{x+3}{1996}+1\right)-\left(\dfrac{x+4}{1995}+1\right)=0\)
\(=\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}-\dfrac{x+1999}{1996}-\dfrac{x+1999}{1995}=0\)
\(=\left(x+1999\right)\left(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\right)=0\)
⇔\(x+1999=0\)
Vậy \(x=-1999\)
Ta có :
\(\dfrac{1997^2-1996^2}{1997^2+1996^2}=\dfrac{1.\left(1997+1996\right)}{1997^2+1996^2}=\dfrac{3993}{1997^2+1996^2}\)
Lại có : \(\dfrac{1}{3993}=\dfrac{3993}{3993^2}\)
Do \(3993^2=\left(1997+1996\right)^2>1997^2+1996^2\)
\(\Rightarrow\dfrac{3993}{3993^2}< \dfrac{3993}{1997^2+1996^2}\)
\(\Rightarrow\dfrac{1}{3993}< \dfrac{1997^2-1996^2}{1997^2+1996^2}\)
a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)
\(\Rightarrow x=-100\)
b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)
\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)
\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)
b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)
=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0
\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0
\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))
\(\Leftrightarrow\)x=-1999
Vậy x=-1999
1998^2-1997(1998+1)
=1998^2-(1998-1)(1998+1)
=1998^2-(1998^2-1)
=1998^2-1998^2+1
=1
a)
\(x^4+1996x^2+1995x+1996\)
\(=\left(x^4-x\right)+\left(1996x^2+1996x+1996\right)\)
\(=x\left(x^3-1\right)+1996\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+1996\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+1996\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+1996\right)\)
b)
\(x^4+1997x^2+1996x+1997\)
\(=\left(x^4-x\right)+\left(1997x^2+1997x+1997\right)\)
\(=x\left(x^3-1\right)+1997\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+1997\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)
x4+1996x2+1995x+1996
=(x4_x)+(1996x2+1996x+1996)
=x(x3-1)+1996(x2+x+1)
=x(x-1)(x2+x+1)+1996(x2+x+1)
=(x2+x+1)((x2-1)+1996)
=(x2+x+1)((x+1)(x-1)+1996)
Câu 2 tương tự bạn nhé!
19972-1996.1998-1
= 1997.1997-(1997-1).(1997+1)-1
= 1997.1997-(1997.1997+1997-1997-1)-1
= 1997.1997-1997.1997-1997+1997+1-1
= 0