K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

Chiều rộng của bể là:

     \(12\div2\div3\times1=2\left(cm\right)\)

Chiều dài của bể là:

     \(2\times2=4\left(cm\right)\)

Chiều cao của bể là:

     \(19200\div4\div2=2400\left(cm\right)\)

                                       Đáp số: \(2400\left(cm\right)\)

24 tháng 4 2020

3 o dau ra the

13 tháng 1 2019

\(|1,9|+19201-|1932|\)

\(=1,9+\left(19201-1932\right)\)

\(=1,9+17269\)

\(=17270,9\)

Hk tốt

13 tháng 1 2019

Ta có:|1,9|+19201-|1982|

       = 1,9+19201 -1982

       =17219+1,9

       =17220,9   

19 tháng 2 2020

a) \(10x+3920=29000\)

\(\Leftrightarrow10x=25080\)

\(\Leftrightarrow x=2508\)

b) \(\frac{x}{8}+2030=19202\)

\(\Leftrightarrow\frac{x}{8}=19202-2030\)

\(\Leftrightarrow x=\frac{4293}{2}\)

c) \(x^2+x^4=18\)

\(\Leftrightarrow x^2\left(1+x^2\right)=18\)

.... ( Nghiệm không được đẹp lắm, bài này mới lớp 6 thôi )

d) \(x+x+x+304=604\)

\(\Leftrightarrow3x=300\)

\(\Leftrightarrow x=100\)

e)\(x+5\frac{4}{5}=\frac{109}{5}\)

\(\Leftrightarrow x=16\)

29 tháng 12 2022

C.75 min

19 tháng 7 2023

M=((x+3)2x29189x2+(x3)2x29):2x+3

27 tháng 1

chịu

 

11 tháng 3 2021

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.

 

 

11 tháng 12 2023

P = 2.3.4....a => P chia hết cho 3 

=> P - 1 : 3 dư 2 => Ko là SCP 

Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2 

=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP 

=> P - 1 và P + 1 Ko là SCP

Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)

\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)

\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)

\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)

\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)

\(=25+\dfrac{25}{51}\)

\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)

30 tháng 1 2023

sai gòi

 

 

11 tháng 3 2021

Giả sử tồn tại n thoả mãn đề bài.

Dễ thấy \(2019^{2018}+1\) chẵn nên \(n^3+2018n\), suy ra n chẵn.

Do đó \(n^3+2018n⋮4\).

Mặt khác ta có \(2019^{2018}\equiv\left(-1\right)^{2018}\equiv1\left(mod4\right)\Rightarrow2019^{2018}+1\equiv2\left(mod4\right)\).

Điều này là vô lí vì VT chia hết cho 4 còn VP không chia hết cho 4.

Vậy không tồn tại n thoả mãn đề bài.

 

5 tháng 3 2022

-8/12= -2/3

15/-60= 1/-4

-16/-72= 2/9

35/14.15= 1/6

6 tháng 5 2022

-8/12 rút gọn bằng-2/3; 15/-60 =-1/4; -16/-72=2/9;35/14.15=1/6