Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, \(|1-3x|=\left|2x+3\right|\)
\(\Leftrightarrow\) 1-3x = 2x+ 3
\(\Leftrightarrow\)-5x = 2
\(\Leftrightarrow\) x=\(\dfrac{-2}{5}\)
Vậy x=\(\dfrac{-2}{5}\)
d, \(\left|3x-5\right|=x-2\)
ĐK: x-2 \(\ge0\Leftrightarrow x\ge2\)
TH1: 3x-5 = x-2
\(\Leftrightarrow\) 2x = 3
\(\Leftrightarrow\) x= \(\dfrac{3}{2}\left(KTM\right)\)
TH2: 3x-5 = 2- x
\(\Leftrightarrow\)4x =7
\(\Leftrightarrow\) x=\(\dfrac{7}{4}\left(KTM\right)\)
Vậy không tìm được giá trị của x thỏa mãn.
Bạn bạn nhân phân phối (3x-1)(x-2) và (3x-1)(7x-10)
Sau đó chuyển vế sao cho về phương trình bậc 2
Sau đó giải pt bậc hai là ra
Ta có : (3x -1 ) . ( x + 2 ) = ( 3x-1 ) .( 7x - 10)
<=>3.x2 + 6x -x -2 = 21x2 -30x - 7x +10
<=> 3x2 + 5x -2 = 21x2 -37x + 10
<=> 3x2 +5x - 3 - 21x2 +37x -10 = 0
<=> -18x2 + 42x -12 = 0
<=> 3x2 -7x +2 = 0
<=> 3x2 -x -6x + 2 = 0
<=> x. ( 3x -1 ) -2.(3x -1 ) = 0
<=> (3x -1 ) . ( x - 2 ) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
Tập nghiệm của phương trình là : { \(\frac{1}{3}\); 2}
\(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2\left(3x+1\right)\)
\(\Leftrightarrow\frac{2\left(2x+1\right)\left(3x+1\right)-\left(3x+1\right)\left(3x-2\right)}{3}-3\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{\left(4x+2\right)\left(3x+1\right)-\left(3x+1\right)\left(3x-2\right)}{3}-3\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{12x^2+10x+2-9x^2+6x-3x+2}{3}-9x-3=0\)
\(\Leftrightarrow\frac{3x^2+13x+4-27x-9}{3}=0\Leftrightarrow\frac{3x^2-14x-5}{3}=0\)
\(\Leftrightarrow3x^2-14x-5=0\Leftrightarrow3x^2-14x=5\Leftrightarrow x\left(3x-14\right)=5\)
\(.................\)
v: Làm tiếp nè
3x^2 - 14x - 5 = 0
<=> 3x^2 - 15x + x - 5 = 0
<=> ....
( 3x - 1)( x + 2) = ( 3x - 1)(7x - 10)
<=>( 3x - 1)( x + 2) - ( 3x - 1)(7x - 10) = 0
<=> ( 3x - 1)( x + 2 - 7x + 10) = 0
<=>( 3x - 1)( -6x + 12) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\-6x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}}\)
Vậy.....
\(\left(3x-1\right)\left(x+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(3x^2+5x-2=21x^2-37x+10\)
\(3x^2+5x-2-21x^2+37x-10=0\)
\(-18x^2+42x-12=0\)
\(-6\left(3x-1\right)\left(x-2\right)=0\)
\(-6\ne0\)
\(\left(3x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=1\\x=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}}\)
b) Xét khoảng \(x< 1\), pt có dạng:
\(1-x=5-3x\Leftrightarrow x=2\), không thuộc khoảng đang xét.
Xét khoảng \(1\le x\le\dfrac{5}{3}\), pt có dạng
\(x-1=5-3x\Leftrightarrow x=1,5\)
Phương trình nghiệm đúng với mọi x thuộc khoảng đang xét.
Xét khoảng \(x>\dfrac{5}{3}\), pt có dạng
\(x-1=3x-5\Leftrightarrow x=2\)
Xét khoảng x<1, pt có dạng:
-2x+[-(x+1]=2 <=> x=-1
Nhận nghiệm vì nghiệm thuộc khoảng đang xét.
Xét khoảng \(-1\le x\le0\), pt có dạng:
2x-[-(x+1)]=2 <=> x=1/3
Loại nghiệm vì không thuộc khoảng đang xét
Xét khoảng x>0, pt có dạng:
2x-(x+1)=2 <=> x=3
Nhận nghiệm vì thuộc khoảng đang xét
S={-1;3}
a)(2x+1)(3x-2)=(5x-8)(2x+1)
⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0
⇔(2x+1)(3x-2-5x+8)=0
⇔(2x+1)(-2x+6)=0
⇔2x+1=0 hoặc -2x+6=0
1.2x+1=0⇔2x=-1⇔x=-1/2
2.-2x+6=0⇔-2x=-6⇔x=3
phương trình có 2 nghiệm x=-1/2 và x=3
a) \(2x^3 + 6x^2 = x^2 +3x\)
\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x^2-x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
S = \(\left\{-3;0;\dfrac{1}{2}\right\}\)
b) \((3x-1) (x^2 +2 ) = (3x-1) (7x - 10)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
S = \(\left\{\dfrac{1}{3};3;4\right\}\)
a) \(2\left|x\right|-\left|x+1\right|=2\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\left(x+1\right)=2\left(đk:x\ge0;x+1\ge0\right)\\2\cdot\left(-x\right)-\left(x+1\right)=2\left(đk:x< 0;x+1\ge0\right)\\2x-\left(-\left(x+1\right)\right)=2\left(đk:x\ge0;x+1< 0\right)\\2\cdot\left(-x\right)-\left(-\left(x+1\right)\right)=2\left(đk:x< 0:x+1< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(đk:x\ge0;x\ge-1\right)\\x=-1\left(đk:x< 0;x\ge-1\right)\\x=\dfrac{1}{3}\left(đk:x\ge0;đk:x< -1\right)\\x=-1\left(đk:x< 0;x< -1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-1;3\right\}\)
- làm tương tự
\(\left|3x-1\right|=1-3x\)
+) Xét \(x\ge\dfrac{1}{3}\) có:
\(3x-1=1-3x\Leftrightarrow6x=2\Leftrightarrow x=\dfrac{1}{3}\) ( t/m )
+) Xét \(x< \dfrac{1}{3}\) có:
\(1-3x=1-3x\)
\(\Leftrightarrow x\in R\forall x< \dfrac{1}{3}\)
Vậy \(x\le\dfrac{1}{3}\)