\(B=64x^6y^{12}\)dưới dạng lũy thừa của một đơn thức.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

\(B=64x^6y^{12}=8^2x^{3.2}y^{6.2}=8^2\left(x^3\right)^2\left(y^6\right)^2=\left(8.x^3.y^6\right)^2\)

Vậy \(B=64x^6y^{12}\)viết dưới dạng lũy thừa của đơn thức là: \(\left(8x^3y^6\right)^2\)

k mình...

13 tháng 6 2017

B=64x6y12=(8x3y6)2

21 tháng 2 2017

* \(B=64x^6y^{12}=4^3x^{2\times3}y^{4\times3}=4^3\times\left(x^2\right)^3\times\left(y^4\right)^3=\left(4x^2y^4\right)^3\)

Vậy đơn thức \(B=64x^6y^{12}\) được viết dưới dạng lũy thừa của một đơn thức là \(\left(4x^2y^4\right)^3.\)

* \(B=64x^6y^{12}=2^6x^6y^{12}=2^6x^6y^{2\times6}=2^6x^6\times\left(y^2\right)^6=\left(2xy^2\right)^6\)

Vậy đơn thức \(B=64x^6y^{12}\) được viết dưới dạng lũy thừa của một đơn thức là \(\left(2xy^2\right)^6\).

* \(B=64x^6y^{12}=8^2x^6y^{12}=8^2x^{3\times2}y^{6\times2}=8^2\times\left(x^3\right)^2\times\left(y^6\right)^2=\left(8x^3y^6\right)^2\)

Vậy đơn thức \(B=64x^6y^{12}\) được viết dưới dạng lũy thừa của một đơn thức là \(\left(8x^3y^6\right)^2\).

* \(B=64x^6y^{12}=\left(-8\right)^2x^6y^{12}=\left(-8\right)^2x^{3\times2}y^{6\times2}=\left(-8\right)^2\times\left(x^3\right)^2\times\left(y^6\right)^2=\left(-8x^3y^6\right)^2\)

Vậy đơn thức \(B=64x^6y^{12}\) được viết dưới dạng lũy thừa của một đơn thức là \(\left(-8x^3y^6\right)^2\).

....Và còn nhiều đáp án khác.... hihiokvui

15 tháng 4 2020

a) (4x)2 , (9x2y)2 , 

b) (3ab4)3 , (\(-\frac{1}{5}\)x3y2)

29 tháng 9 2018

a)x12=x9.x3

b)(x4)3

11 tháng 8 2016

Các bạn ơi, dấu / là dấu chia nha

11 tháng 8 2016

a) 3.243.26 = 46656

b) 810 : 167 = \(\frac{8^{10}}{16^7}=4\)

18 tháng 4 2017

a) \(x^{10}=x^7.x^3\)

b) \(x^{10}=\left(x^2\right)^5\)

c) \(x^{10}=x^{12}:x^2\)

10 tháng 2 2020

GỌI ĐƠN THỨC PHẢI TÌM LÀ\(ax^py^q\left(p,q\in N\right)\)

ta có \(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.ax^py^q;3x^{n+3}y^{m-2}=\frac{2}{5}ax^{n+p}y^{2+q}\)

suy ra \(3=\frac{2}{5}a\Rightarrow a=3:\frac{2}{5}=\frac{15}{2}=7\frac{1}{2}\)

\(n+3=n+p\)

\(\Rightarrow p=3\)

\(m-2=2+q\)

\(\Rightarrow q=m-2-2=m-4\left(q\in n,vớim\in N,m>4\right)\)

vậy đơn thức cần tìm là\(7\frac{1}{2}x^3y^{m-4}\)và ta có\(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.7\frac{1}{2}x^3y^{m-4}\)

Gọi đơn thức phải tìm là: \(ax^py^q\left(p,q\in N\right).\)Ta có:

\(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.ax^py^q;3x^{n+3}y^{m-2}=\frac{2}{5}ax^{n+p}y^{2+q}\)

\(\Rightarrow3=\frac{2}{5}a\Rightarrow a=3:\frac{2}{5}=\frac{15}{2}=7\frac{1}{2}\)

\(n+3=n+p\Rightarrow p=3\)

\(m-2=2+q\Rightarrow q=m-2-2=m-4\left(q\in Nvi-m\in Nva-m>4\right)\)

Vậy đơn thức phải tìm là \(7\frac{1}{2}x^3y^{m-4}\)và ta có \(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.7\frac{1}{2}x^3y^{m-4}\)