K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

a) \(\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)

\(=\dfrac{16+x}{x^2-2x}-\dfrac{18}{x^2-2x}\)

\(=\dfrac{16+x-18}{x^2-2x}\)

\(=\dfrac{x-2}{x\left(x-2\right)}\)

\(=\dfrac{1}{x}\)

18 tháng 11 2019

\(=\frac{16+x}{x^2-2x}-\frac{18}{x^2-2x}\)

\(=\frac{16+x-18}{x\left(x-2\right)}\)

\(=\frac{-2+x}{x\left(x-2\right)}\)

18 tháng 11 2019

a) \(\frac{16+x}{x^2-2x}+\frac{18}{2x-x^2}=\frac{16+x-18}{x^2-2x}=\frac{x-2}{x\left(x-2\right)}=\frac{1}{x}\)

b) \(\frac{2y}{2x^2-xy}+\frac{4x}{xy-2x^2}=\frac{2y-4x}{2x^2-xy}=\frac{-2\left(2x-y\right)}{x\left(2x-y\right)}=\frac{-2}{x}\)

c) \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}=\frac{4-x^2+2x^2-2x+5-4x}{x-3}=\frac{x^2-6x+9}{x-3}=\frac{\left(x-3\right)^2}{x-3}=x-3\)

12 tháng 11 2017

\(a,\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)

\(=\dfrac{16+x}{x^2-2x}-\dfrac{18}{x^2-2x}\)

\(=\dfrac{16+x-18}{x^2-2x}\)

\(=\dfrac{x-2}{x\left(x-2\right)}\)

\(=\dfrac{1}{x}\)

\(b,\dfrac{2y}{2x^2-xy}+\dfrac{4x}{xy-2x^2}\)

\(=\dfrac{2y}{2x^2-xy}-\dfrac{4x}{2x^2-xy}\)

\(=\dfrac{2y-4x}{2x^2-xy}\)

\(=\dfrac{2\left(y-2x\right)}{x\left(2x-y\right)}\)

\(=\dfrac{-2\left(2x-y\right)}{x\left(2x-y\right)}\)

\(=-\dfrac{2}{x}\)

\(c,\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)

\(=\dfrac{4-x^2}{x-3}-\dfrac{2x^2-2x}{x-3}+\dfrac{5-4x}{x-3}\)

\(=\dfrac{4-x^2-2x^2+2x+5-4x}{x-3}\)

\(=\dfrac{-3x^2-2x+9}{x-3}\)

12 tháng 11 2017

\(a,\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)

\(=\dfrac{16+x}{x^2-2x}-\dfrac{18}{x^2-2x}\)

\(=\dfrac{16+x-18}{x^2-2x}\)

\(=\dfrac{x-2}{x\left(x-2\right)}\)

\(=\dfrac{1}{x}\)

\(b,\dfrac{2y}{2x^2-xy}+\dfrac{4x}{xy-2x^2}\)

\(=\dfrac{2y}{2x^2-xy}-\dfrac{4x}{2x^2-xy}\)

\(=\dfrac{2y-4x}{2x^2-xy}\)

\(=\dfrac{2\left(y-2x\right)}{x\left(2x-y\right)}\)

\(=\dfrac{-2\left(2x-y\right)}{x\left(2x-y\right)}\)

\(=-\dfrac{2}{x}\)

\(c,\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)

\(=\dfrac{4-x^2}{x-3}-\dfrac{2x^2-2x}{x-3}+\dfrac{5-4x}{x-3}\)

\(=\dfrac{4-x^2-2x^2+2x+5-4x}{x-3}\)

\(=\dfrac{-3x^2-2x+9}{x-3}\)

Câu 5:B

Câu 4: C

Câu 3: D

Câu 2: A

Câu 1: A

1 tháng 5 2017

a, 3y-2y=2y-3

    3y-2y-2y=3

    -y=3

     y=-3

b, 3-4x+24+6x=x+27+3x

   -4x+6x-x-3x =27-3-24

   -2x              =0

      x             =0

  

1 tháng 5 2017

c, 5-(6-x)=4.(3-2x)

   5-6+x =12-8x

   x+8x  =12+6-5

  9x      =13

   x       =13/9

d, 4.(x+3)=-7x+17

   4x+12  =-7x+17

4x+7x     =17-12

11x         =5

  x          =5/11

a: \(16x^3+0,25yz^3\)

\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)

\(=0,25\left(64x^3+yz^3\right)\)

b: \(x^4-4x^3+4x^2\)

\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)

\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)

c: \(x^3+x^2y-xy^2-y^3\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)^2\)

d: \(x^3+x^2+x+1\)

\(=x^2\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+1\right)\)

e: \(x^4-x^2+2x-1\)

\(=x^4-\left(x^2-2x+1\right)\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

f: \(2x^2-18\)

\(=2\cdot x^2-2\cdot9\)

\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)

g: \(x^2+8x+7\)

\(=x^2+x+7x+7\)

\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

h: \(x^4y^4+4\)

\(=x^4y^4+4x^2y^2+4-4x^2y^2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)

i: \(x^4+4y^4\)

\(=x^4+4x^2y^2+4y^4-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

k: \(x^2-2x-15\)

\(=x^2-5x+3x-15\)

\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)