
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


phamthiminhtrang
\(a,x=\frac{3}{6}-\frac{8}{16}\)
\(\Rightarrow x=0\)
\(b,\frac{12}{16}:x=\frac{32}{64}\)
\(x=\frac{12}{16}:\frac{32}{64}\)
\(x=\frac{12}{16}\cdot\frac{64}{32}\)
\(x=\frac{3}{8}\)
\(a,\)\(x\)\(=\frac{3}{6}-\frac{8}{16}=\frac{1}{2}-\frac{1}{2}=0\)
\(b,\)\(\frac{12}{16}\)\(:\)\(x\)\(=\frac{32}{64}\)
\(=>\) \(x\)\(=\)\(\frac{12}{16}:\frac{32}{64}\)
\(x\) \(=\)\(\frac{12}{16}.\frac{64}{32}\)
\(x\)\(=\)\(\frac{3}{4}.2\)
\(x\)\(=\)\(\frac{6}{4}=\frac{3}{2}\)

a: \(=\dfrac{-4}{7}+\dfrac{7}{16}=\dfrac{-64+49}{112}=\dfrac{-15}{112}\)
b: \(=\dfrac{5}{16}\cdot32=10\)
c: \(=\dfrac{\left(-3\right)^2}{5^2}=\dfrac{9}{25}\)
d: \(=\dfrac{4}{5}\cdot\dfrac{-3+2}{10}=\dfrac{4}{5}\cdot\dfrac{-1}{10}=\dfrac{-4}{50}=\dfrac{-2}{25}\)

a/ \(8^5=\left(2^3\right)^5=2^{15}\)và \(32^3=\left(2^5\right)^3=2^{15}\Rightarrow8^5=32^3\)
b/ \(27^4=\left(3^3\right)^4=3^{12}\) và \(9^6=\left(3^2\right)^6=3^{12}\Rightarrow27^4=9^6\)
c/ \(23^{17}-23^{16}=23^{16}\left(23-1\right)=22.23^{16}\)
\(23^{16}-23^{15}=23^{15}\left(23-1\right)=22.23^{15}\)
\(\Rightarrow22.23^{16}>22.23^{15}\Rightarrow23^{17}-23^{16}>23^{16}-23^{15}\)
d/ \(\frac{3^{2015}+1}{3^{2016}}=\frac{1}{3}+\frac{1}{3^{2016}}\) và \(\frac{3^{2016}+1}{3^{2017}+1}=\frac{3^{2017}+3}{3\left(3^{2017}+1\right)}=\frac{3^{2017}+1+2}{3\left(3^{2017}+1\right)}=\frac{1}{3}+\frac{2}{3}.\frac{1}{3^{2017}+1}\)
\(\frac{1}{3^{2016}}>\frac{1}{3^{2017}}>\frac{1}{3^{2017}+1}>\frac{2}{3}.\frac{1}{3^{2017}+1}\)
\(\Rightarrow\frac{3^{2015}+1}{3^{2016}}>\frac{3^{2016}+1}{3^{2017}+1}\)
Câu cuối phân tích tương tự

A = 1 + 1/2 x 2x3/2 + 1/3 x 3x4/2 +.............+ 1/16 x 16x17/2
A = 1+ 3/2 +4/2 + ............+ 17/2
A = 1+ (3+4+5+.........+17)/2
A = 1+75 = 76
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
\(A=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+3+..+16\right)\)
\(A=1+\frac{1}{2}.3+\frac{1}{3}.6+....+\frac{1}{16}.136\)
\(A=1+\frac{3}{2}+2+...+\frac{15}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{15}{2}\)
\(A=\frac{2+3+4+...+15}{2}\)
\(A=\frac{119}{2}=59,5\)
\(16^3=\left(2^4\right)^3=2^{4\cdot3}=2^{12}=4096\)
16\(16^3=16.16.16=4096\)