K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2016

Dãy 1; 5; 9; 13; 17; ...; x là dãy cách đều 4 đơn vị. Dãy này có SSH: (x-1)/4 + 1

Tổng của dãy này là: (x + 1) [(x-1)/4 + 1]: 2

Do đó:

1+5+9+13+17+....+x=10100

<=> (x + 1) [(x-1)/4 + 1]: 2 = 10100

<=> (x + 1) [(x-1)/4 + 1] = 20200

<=> (x + 1) (x + 3) = 80800

<=> x2 + 4x - 80797 = 0

$\Delta $=4 + 80797 = 80801....

... PT này có nghiệm vô tỉ => Không tìm được STN x nào thoả mãn.

11 tháng 10 2017

Ghép (11;9) ; (12;8) ; ....;(19;1) ta có giá trị mỗi cập là 20

Mà có tất cả:  18/2 = 9 cặp như thế     ( do tổng trên có 18 số hạng , 2 số hạng ghép thành một cặp)

===> Tổng trên bằng 20 x 9 =180

11 tháng 10 2017

11+12+13+.....+18+19+1+2+3+4+.....+8+9

= (11+9)+(12+8)+13+7)+....+(18+2)+(19+1)             

= [(19-1)+1.(11+9)

= 19.20

=19.10+19.10

= 380

em mới lớp 6 :D

8 tháng 9 2019

Nếu đề đúng:

Sử dụng liên hợp để trục căn thức ở mẫu:

\(\frac{1}{\sqrt{1}+\sqrt{5}}=\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\frac{\sqrt{5}-1}{5-1}=\frac{\sqrt{5}-1}{4}\) 

Tương tự như vậy ta sẽ có:

\(N=\frac{\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}+\frac{\sqrt{13}-\sqrt{9}}{\left(\sqrt{13}-\sqrt{9}\right)\left(\sqrt{13}+\sqrt{9}\right)}+\frac{\sqrt{17}-\sqrt{13}}{\left(\sqrt{17}-\sqrt{13}\right)\left(\sqrt{17}+\sqrt{13}\right)}\)

\(+\frac{\sqrt{21}-\sqrt{17}}{\left(\sqrt{21}-\sqrt{17}\right)\left(\sqrt{21}+\sqrt{17}\right)}+\frac{\sqrt{25}-\sqrt{23}}{\left(\sqrt{25}-\sqrt{23}\right)\left(\sqrt{25}+\sqrt{23}\right)}\)

\(=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+\frac{\sqrt{17}-\sqrt{13}}{4}+\frac{\sqrt{21}-\sqrt{17}}{4}+\frac{\sqrt{25}-\sqrt{23}}{4}\)

\(=\frac{\sqrt{5}-1+\sqrt{13}-\sqrt{9}+\sqrt{17}-\sqrt{13}+\sqrt{21}-\sqrt{17}+\sqrt{25}-\sqrt{23}}{4}\)

\(=\frac{\sqrt{5}-1-\sqrt{9}+\sqrt{21}+\sqrt{25}-\sqrt{23}}{4}=\frac{\sqrt{5}-1-3+\sqrt{21}+5-\sqrt{23}}{4}=\frac{1+\sqrt{5}+\sqrt{21}-\sqrt{23}}{4}\)

9 tháng 10 2016

44100 nha bạnhaha

9 tháng 10 2016

44100 nha

20 tháng 2 2016

=9.887666677000000000000

Toi mat 12 phut de tinh do nha nen ban phai k tui nha

12 tháng 7 2018

\(1.\sqrt{17-4\sqrt{9+4\sqrt{5}}}=\sqrt{17-4\sqrt{5+2.2\sqrt{5}+4}}=\sqrt{17-4\left(\sqrt{5}+2\right)}=\sqrt{5-2.2\sqrt{5}+4}=\sqrt{5}-2\)

\(2.\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}=\sqrt{17-6\sqrt{2+2\sqrt{2}+1}}=\sqrt{17-6\left(\sqrt{2}+1\right)}=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)\(3.\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}=\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}=\sqrt{3+\sqrt{3-2\sqrt{3}+1}}=\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(4.\sqrt{27+10\sqrt{2}}:\dfrac{1}{\sqrt{\left(\sqrt{2}-5\right)^2}}=\sqrt{25+2.5\sqrt{2}+2}.\left(5-\sqrt{2}\right)=\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)=5-2=3\)

18 tháng 6 2021

`a)\sqrt{9-4sqrt5}-sqrt5`

`=sqrt{5-2.2sqrt5+4}-sqrt5`

`=sqrt{(sqrt5-2)^2}-sqrt5`

`=|\sqrt5-2|-sqrt5`

`=sqrt5-2-sqrt5=-2`

`b)\sqrt{7-4sqrt3}+sqrt{4-2sqrt3}`

`=\sqrt{4-2.2sqrt3+3}+\sqrt{3-2sqrt3+1}`

`=sqrt{(2-sqrt3)^2}+sqrt{(sqrt3-1)^2}`

`=|2-sqrt3|+|sqrt3-1|`

`=2-sqrt3+sqrt3-1=1`

`c)(x-49)/(sqrtx-7)(x>=0,x ne 49)`

`=((sqrtx-7)(sqrtx+7))/(sqrtx-7)`

`=sqrtx+7`

`d)\sqrt{4+2\sqrt3}-\sqrt{13+4sqrt3}`

`=\sqrt{3+2sqrt3+1}-\sqrt{12+2.2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}-\sqrt{(2sqrt3+1)^2}`

`=sqrt3+1-2sqrt3-1=-sqrt3`

`e)2+sqrt{17-4sqrt{9+4sqrt{45}}}`(câu này hơi sai)

18 tháng 6 2021

phần e bỏ số 4 ở cuối đi :)) 

7 tháng 9 2020

+) ĐKXĐ : \(x\ge-1\)

 \(\sqrt{x+1}+13=17\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(TM\right)\)

+) ĐKXĐ : \(x\ge\frac{1}{2}\)

\(\sqrt{2x-1}=x+2\)

\(\Leftrightarrow2x-1=x^2+4x+4\)

\(\Leftrightarrow2x-x^2-4x-1-4=0\)

\(\Leftrightarrow-2x-x^2-5=0\)

\(\Leftrightarrow-\left(x^2+2x+1+4\right)=0\)

\(\Leftrightarrow-\left(x+1\right)^2=4\)

Vậy phương trình vô nghiệm

+) ĐKXĐ : với mọi x

\(\sqrt{x^2-6x+9}=x+1\) 

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+1\)

\(\Leftrightarrow\left|x-3\right|=x+1\)

Giải nốt

7 tháng 9 2020

\(\sqrt{x+1}+13=17\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\)

\(\sqrt{2x-1}=x+2\)

\(\Leftrightarrow2x-1=x^2+4x+4\)

\(\Leftrightarrow-x^2-2x-5=0\)

\(\Leftrightarrow x^2+2x+5=0\)

có lẽ sai đề hoặc mình sai bạn kt lại phần này hộ

\(\sqrt{x^2-6x+9}=x+1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+1\)

\(\Leftrightarrow x-3=x+1\)

\(\Rightarrow\)x không tồn tại