Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM ta có hệ quả quen thuộc sau:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Leftrightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Leftrightarrow \frac{(a+b+c)^2}{3}\geq ab+bc+ac\Rightarrow \frac{3}{ab+bc+ac}\geq \frac{3}{\frac{(a+b+c)^2}{3}}=\frac{9}{(a+b+c)^2}\)
Do đó:
\(1+\frac{3}{ab+bc+ac}\geq 1+\frac{9}{(a+b+c)^2}\) (1)
Ta sẽ đi chứng minh \(1+\frac{9}{(a+b+c)^2}\geq \frac{6}{a+b+c}\) (2)
\(\Leftrightarrow \left(\frac{3}{a+b+c}-1\right)^2\geq 0\) (đúng)
Từ (1),(2) suy ra \(1+\frac{3}{ab+bc+ac}\geq \frac{6}{a+b+c}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Lời giải:
\(\frac{a^2+bc}{b+c}+\frac{b^2+ac}{c+a}+\frac{c^2+ab}{a+b}\geq a+b+c\)
\(\Leftrightarrow \frac{a^2+bc}{b+c}-c+\frac{b^2+ac}{a+c}-a+\frac{c^2+ab}{a+b}-b\geq 0\)
\(\Leftrightarrow \frac{a^2-c^2}{b+c}+\frac{b^2-a^2}{a+c}+\frac{c^2-b^2}{a+b}\geq 0\)
\(\Leftrightarrow a^2\left(\frac{1}{b+c}-\frac{1}{a+c}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\geq 0\)
\(\Leftrightarrow \frac{a^2(a-b)(a+b)+b^2(b-c)(b+c)+c^2(c-a)(c+a)}{(a+b)(b+c)(c+a)}\geq 0\)
\(\Leftrightarrow a^2(a^2-b^2)+b^2(b^2-c^2)+c^2(c^2-a^2)\geq 0\)
\(\Leftrightarrow a^4+b^4+c^4-(a^2b^2+b^2c^2+c^2a^2)\geq 0\)
\(\Leftrightarrow \frac{(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2}{2}\geq 0\) (luôn đúng)
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c$
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
Gọi cái đó là P
Đặt \(\left\{{}\begin{matrix}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=y+z\\b=z+x\\c=x+y\end{matrix}\right.\)
Thì ta có:
\(P=\dfrac{\left(x+z\right)\left(y+z\right)}{2z}+\dfrac{\left(x+y\right)\left(z+y\right)}{2y}+\dfrac{\left(z+x\right)\left(y+x\right)}{2x}\ge2\left(x+y+z\right)\)
\(\Leftrightarrow2x^2y^2+2y^2z^2+2z^2x^2-2xyz^2-2yzx^2-2zxy^2\ge0\)
\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0\) (đúng)
\(\RightarrowĐPCM\)
Áp đụng bất đẳng thức AM - GM, ta có:
\(\dfrac{a^3}{b}+ab\ge2a^2\)
\(\dfrac{b^3}{c}+bc\ge2b^2\)
\(\dfrac{c^3}{a}+ca\ge2c^2\)
Theo hệ quả của bất đẳng thức AM - GM thì:
\(a^2+b^2+c^2\ge ab+bc+ac\)
Do đó, \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\left(đpcm\right)\)
Dấu "=" xảy ra khi a = b = c = 0.
Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\) có:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{a^2b}{b}+\dfrac{b^2c}{c}+\dfrac{c^2a}{a}\)
\(=a^2+b^2+c^2\ge ab+bc+ca\)
Dấu " = " khi a = b = c = 1
Vậy...