K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)

\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)

\(=x^2+4x+3-\dfrac{12}{2x+3}\)

 

24 tháng 12 2021

\(A=BQ+R\\ \Leftrightarrow A:B=Q\left(\text{dư }R\right)\)

Ta có \(A:B=\left(2x^4+3x^3-5x^2-11x+8\right):\left(x^3-3x+1\right)\)

\(\Leftrightarrow A:B=\left(2x^4-6x^2+2x+3x^3-9x^2+3x+10x^2-16x+8\right):\left(x^3-3x+1\right)\\ \Leftrightarrow A:B=\left[\left(x^3-3x+1\right)\left(2x+3\right)+10x^2-16x+8\right]:\left(x^3-2x+1\right)\\ =2x+3\left(\text{dư }10x^2-16x+8\right)\\ \Leftrightarrow\left\{{}\begin{matrix}Q=2x+3\\R=10x^2-16x+8\end{matrix}\right.\)

9 tháng 12 2019

Ta có:

\(\frac{x}{x^2+x+1}=-\frac{1}{4}\Rightarrow x^2+x+1=-4x\)

\(\Rightarrow x^2+5x+1=0\Rightarrow x^2=5x+1\)

Với x2=5x+1 ta được:

\(P=\frac{2x\left(5x+1\right)^2+10\left(5x+1\right)^2+2x\left(5x+1\right)-7\left(5x+1\right)-35x+2009}{2029+60x+11\left(5x+1\right)-5x\left(5x+1\right)-\left(5x+1\right)^2}\)

\(P=\frac{2x\left(25x^2+10x+1\right)+10\left(25x^2+10x+1\right)+10x^2+2x-35x-7-35x+2009}{2029+60x+55x+11-25x^2-5x-\left(25x^2+10x+1\right)}\)

\(P=\frac{50x^3+20x^2+2x+250x^2+100x+10+10x^2+2x-35x-7-35x+2009}{2029+60x+55x+11-25x^2-5x-25x^2-10x-1}\)

\(P=\frac{50x^3+280x^2+34x+2012}{2039+100x-50x^2}\)

\(P=\frac{50x\left(5x+1\right)+280\left(5x+1\right)+34x+2012}{2039+100x-50\left(5x+1\right)}\)

\(P=\frac{250x^2+50x+1400x+280+34x+2012}{2039+100x-250x-50}\)

\(P=\frac{250\left(5x+1\right)+50x+1400x+280+34x+2012}{1989-150x}\)

\(P=\frac{1250x+250+50x+1400x+280+34x+2012}{1989-150x}\)

9 tháng 12 2019

bài trên sai rồi

8 tháng 9 2021

a) 3xy- 3x3 - 6xy + 3x 

=3x (y2 - x2 - 2y +1)

= 3x [ (y-1)2 -x2 ]

=3x (y-1-x)(y-1+x)

8 tháng 9 2021

b) 3x2 +11x+6

= 3 x2 +9x +2x +6

=3x (x+3)+2(x+3)

= (x+3)(3x+2)

 

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

13 tháng 6 2019

a) \(3y^2\left(2y-1\right)+y-y\left(1-y+y^2\right)-y^2+y \)

= \(6y^3-3y^2+y-y+y^2-y^3-y^2+y\)

= \(5y^3-3y^2+y\)

b)\(25x-4\left(3x-1\right)+\left(5-2x\right)7\)

= \(25x-12x+4+35-14x\)

= \(-x+39\)

c) \(11x-2\left(10x-1\right)-\left(4x-1\right)\left(-2\right)\)

= \(11x-\left(20x-2\right)-\left(-8x+2\right)\)

= \(11x-20x+2+8x-2\)

= \(-x\)

d) \(\left(\frac{1}{2x}\right)3-x\left(1-2x-\frac{1}{8x^2}\right)-x\left(x+\frac{1}{2}\right)\)

= \(\frac{3}{2x}-x+2x^2+\frac{x}{8x^2}-x^2-\frac{x}{2}\)

= \(\left(\frac{3}{2x}+\frac{1}{8x}-\frac{x}{2}\right)+x^2-x\)

= \(\left(\frac{12+1-4x^2}{8x}\right)+x^2-x\)

= \(\frac{13-4x^2}{8x}+\frac{8x^3}{8x}-\frac{8x^2}{8x}\)

= \(\frac{13-4x^2+8x^3-8x^2}{8x}\)

= \(\frac{8x^3-12x^2+13}{8x}\)

= x2 - \(\frac{3}{2}\)+\(\frac{13}{8x}\)

e) \(12\left(2-3x\right)+35x-\left(x+1\right)\left(-5\right)\)

= \(24-36x+35x-\left(-5x-5\right)\)

= \(24-36x+35x+5x+5\)

= 4x + 29

câu d:(-1/2x)3-x.(1-2x-1/8x2)-x.(x+1/2) nha