K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

\(1,\\ x+\dfrac{1}{2}=-\dfrac{5}{3}\\ x=-\dfrac{5}{3}-\dfrac{1}{2}\\ x=-\dfrac{13}{6}\\ Vậyx=-\dfrac{13}{6}\)

\(2,\\ \dfrac{1}{3}-x=\dfrac{3}{5}\\ x=\dfrac{1}{3}-\dfrac{3}{5}\\ x=-\dfrac{4}{15}\\ Vậyx=-\dfrac{4}{15}\)

\(3,\\ 3-4+x=\dfrac{7}{2}\\ -1+x=\dfrac{7}{2}\\ x=\dfrac{7}{2}+1\\ x=\dfrac{9}{2}\\ Vậyx=\dfrac{9}{2}\)

\(4,\\ x-\dfrac{4}{3}=-\dfrac{7}{9}\\ x=-\dfrac{7}{9}+\dfrac{4}{3}\\ x=\dfrac{15}{27}\\ Vậyx=\dfrac{15}{27}\)

\(5,\\ x-\left(-\dfrac{7}{3}\right)=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{3}\\ x=-\dfrac{27}{18}\\ Vậyx=-\dfrac{27}{18}\)

\(6,\\ x-\dfrac{1}{5}=\dfrac{9}{10}\\ x=\dfrac{9}{10}+\dfrac{1}{5}\\ x=\dfrac{11}{10}\\ Vậyx=\dfrac{11}{10}\)

\(7,\\ x+\dfrac{5}{12}=\dfrac{3}{8}\\ x=\dfrac{3}{8}-\dfrac{5}{12}\\ x=-\dfrac{1}{24}\\ Vậyx=-\dfrac{1}{24}\)

\(8,\\ x+\dfrac{5}{4}=\dfrac{7}{6}\\ x=\dfrac{7}{6}-\dfrac{5}{4}\\ x=-\dfrac{9}{24}\\ Vậyx=-\dfrac{9}{24}\)

\(9,\\ x-\dfrac{2}{7}=\dfrac{1}{35}\\ x=\dfrac{1}{35}+\dfrac{2}{7}\\ x=\dfrac{11}{35}\\ Vậyx=\dfrac{11}{35}\\ 10,\\ x-\dfrac{1}{5}=-\dfrac{7}{10}\\ x=-\dfrac{7}{10}+\dfrac{1}{5}\\ x=-\dfrac{1}{2}\\ Vậyx=-\dfrac{1}{2}\)

18 tháng 2 2021

ahiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii hãy ấn a

1: =72/90+65/90=137/90

2: =24/56-77/56=-53/56

3: =-7/10+4/5=1/10

4: =15/100-4/100=11/100

5: =4/6-5/6=-1/6

6: =10/40-15/40-76/40=-81/40

7: =-9/10+7/18

=-81/90+35/90=-46/90=-23/45

8: =27/90-55/90=-28/90=-14/45

9: =36/60-50/60-35/60=-49/60

10: =-4/9+5/6-3/8

=-32/72+60/72-27/72

=1/72

11 tháng 8 2016

a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)

\(1-\frac{1}{10}\)

=\(\frac{9}{10}\)

b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)

=\(1-\frac{1}{11}\)

\(\frac{10}{11}\)

c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)

     \(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

     \(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

      \(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

     \(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)

     \(\frac{2}{3}A\)=\(\frac{10}{11}\)

         A= \(\frac{10}{11}:\frac{2}{3}\)

          A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)

d) giả tương tự câu c kết quả \(\frac{25}{11}\)

11 tháng 8 2016

tổng đặc biệt đó bạn

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(1-\frac{1}{10}=\frac{9}{10}\)

những câu sau cũng áp dụng như vậy nhé

27 tháng 6 2018

1/ \(x+\dfrac{1}{2}=\dfrac{-5}{3}\)

\(x=\dfrac{-5}{3}-\dfrac{1}{2}\)

\(x=\dfrac{-10}{6}-\dfrac{3}{6}\)

Vậy \(x=\dfrac{-13}{6}\)

2/\(\dfrac{1}{3}-x=\dfrac{3}{5}\)

\(-x=\dfrac{3}{5}-\dfrac{1}{3}\)

\(-x=\dfrac{9}{15}-\dfrac{5}{15}\)

\(-x=\dfrac{4}{15}\)

Vậy \(x=\dfrac{-4}{15}\)

3/ \(3-4+x=\dfrac{7}{2}\)

\(-4+x=\dfrac{7}{2}-3\)

\(-4+x=\dfrac{7}{2}-\dfrac{6}{2}\)

\(-4+x=\dfrac{1}{2}\)

\(x=\dfrac{1}{2}+4\)

\(x=\dfrac{1}{2}+\dfrac{8}{2}\)

Vậy \(x=\dfrac{9}{2}\)

4/ \(x-\dfrac{4}{3}=\dfrac{-7}{9}\)

\(x=\dfrac{-7}{9}+\dfrac{4}{3}\)

\(x=\dfrac{-7}{9}+\dfrac{12}{9}\)

Vậy \(x=\dfrac{5}{9}\)

5/ \(x-\dfrac{-7}{2}=\dfrac{5}{6}\)

\(x=\dfrac{5}{6}-\dfrac{7}{2}\)

\(x=\dfrac{5}{6}-\dfrac{21}{6}\)

Vậy \(x=\dfrac{-16}{6}=\dfrac{-8}{3}\)

6/ \(x-\dfrac{1}{5}=\dfrac{9}{10}\)

\(x=\dfrac{9}{10}+\dfrac{1}{5}\)

\(x=\dfrac{9}{10}+\dfrac{2}{10}\)

Vậy \(x=\dfrac{11}{10}\)

7/ \(x+\dfrac{5}{12}=\dfrac{3}{8}\)

\(x=\dfrac{3}{8}-\dfrac{5}{12}\)

\(x=\dfrac{9}{24}-\dfrac{10}{24}\)

Vậy \(x=\dfrac{-1}{24}\)

8/ \(x+\dfrac{5}{4}=\dfrac{7}{6}\)

\(x=\dfrac{7}{6}-\dfrac{5}{4}\)

\(x=\dfrac{14}{12}-\dfrac{15}{12}\)

Vậy \(x=\dfrac{-1}{12}\)

9/ \(x-\dfrac{2}{7}=\dfrac{1}{35}\)

\(x=\dfrac{1}{35}+\dfrac{2}{7}\)

\(x=\dfrac{1}{35}+\dfrac{10}{35}\)

Vậy \(x=\dfrac{11}{35}\)

10 /\(x-\dfrac{1}{5}=\dfrac{-7}{10}\)

\(x=\dfrac{-7}{10}+\dfrac{1}{5}\)

\(x=\dfrac{-7}{10}+\dfrac{2}{10}\)

Vậy \(x=\dfrac{-5}{10}=\dfrac{-1}{2}\)

`@` `\text {Ans}`

`\downarrow`

`1)`

\(x+\dfrac{1}{2}=\dfrac{5}{3}\)

`\Rightarrow` \(x=\dfrac{5}{3}-\dfrac{1}{2}\)

`\Rightarrow`\(x=\dfrac{7}{6}\)

Vậy, `x =`\(\dfrac{7}{6}\)

`2)`

\(\dfrac{3}{5}-x=\dfrac{1}{3}\)

`\Rightarrow`\(x=\dfrac{3}{5}-\dfrac{1}{3}\)

`\Rightarrow`\(x=\dfrac{4}{15}\)

Vậy, `x =`\(\dfrac{4}{15}\)

`3)`

\(\dfrac{3}{4}+x=\dfrac{7}{2}\)

`\Rightarrow`\(x=\dfrac{7}{2}-\dfrac{3}{4}\)

`\Rightarrow`\(x=\dfrac{11}{4}\)

Vậy, \(x=\dfrac{11}{4}\)

`4)`

\(x-\dfrac{4}{3}=\dfrac{7}{9}\)

`\Rightarrow`\(x=\dfrac{7}{9}+\dfrac{4}{3}\)

`\Rightarrow`\(x=\dfrac{19}{9}\)

Vậy, `x=`\(\dfrac{19}{9}\)

`5)`

\(x-\dfrac{5}{6}=\dfrac{7}{3}\)

`\Rightarrow`\(x=\dfrac{7}{3}+\dfrac{5}{6}\)

`\Rightarrow x =`\(\dfrac{19}{6}\)

Vậy, `x=`\(\dfrac{19}{6}\)

`6)`

\(x-\dfrac{1}{5}=\dfrac{9}{10}\)

`\Rightarrow x=`\(\dfrac{9}{10}+\dfrac{1}{5}\)

`\Rightarrow x=`\(\dfrac{11}{10}\)

Vậy, `x=`\(\dfrac{11}{10}\)

20 tháng 5 2018

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

21 tháng 5 2018

bạn giải nốt đi

12 tháng 6 2018

b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)

\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)

\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)

Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)

\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

12 tháng 6 2018

a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)

\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)

\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)

Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)

\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)

\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)

\(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)

Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)

19 tháng 3 2016

câu hỏi?

2 tháng 1 2018

\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)

\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)

\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)  

Có: \(\frac{1}{1+5+5^2+...+5^8}>0\)              và      \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)

\(\Rightarrow A>B\)