Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(45+x=\sqrt{72}\)
\(\Rightarrow45+x=\sqrt{36\times2}\)
\(\Rightarrow45+x=\sqrt{36}\times\sqrt{2}\)
\(\Rightarrow45+x=6\sqrt{2}\)
\(\Rightarrow x=6\sqrt{2}-45\)
a) \(\left|x-\frac{1}{2}\right|-\sqrt{\frac{1}{9}}=\sqrt{\frac{1}{4}}\)
\(\Rightarrow\left|x-\frac{1}{2}\right|-\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow\left|x-\frac{1}{2}\right|=\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow\left|x-\frac{1}{2}\right|=\frac{5}{6}.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{2}=\frac{5}{6}\\x-\frac{1}{2}=-\frac{5}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{6}+\frac{1}{2}\\x=\left(-\frac{5}{6}\right)+\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{4}{3};-\frac{1}{3}\right\}.\)
b) \(3^{x+2}-3^x=72\)
\(\Rightarrow3^x.3^2-3^x.1=72\)
\(\Rightarrow3^x.\left(3^2-1\right)=72\)
\(\Rightarrow3^x.8=72\)
\(\Rightarrow3^x=72:8\)
\(\Rightarrow3^x=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Chúc bạn học tốt!
a) \(-2\sqrt{x^2+1}=-8\)
=> \(\sqrt{x^2+1}=-8:\left(-2\right)\)
=> \(\sqrt{x^2+1}=4\)
=> \(x^2+1=16\)
=> \(x^2=16-1=15\)
=> \(\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
b) \(4+3\sqrt{x^2+2}=4\)
=> \(3\sqrt{x^2+2}=4-4=0\)
=> \(\sqrt{x^2+2}=0\)
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> ko có giá trị x t/m
c)\(\sqrt{x+1}=3\)
=> \(x+1=9\)
=> x = 9 - 1 = 8
d) TT trên
2) so sánh
Ta có \(\sqrt{17}\)>\(\sqrt{16}\)=4
\(\sqrt{26}\)>\(\sqrt{25}\)=5
=> \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
=>\(\sqrt{17}+\sqrt{25}+1>5+4+1=10\)
Mà \(\sqrt{99}< \sqrt{100}=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
mk giúp bạn được câu 2 thôi
Xin lỗi nhá
Dinh Nguyen Ha Linh bn vào câu hỏi của tôi rùi ấn sửa nội dung cho đúng đi nhé
Ta có : \(\left(x-5\right)^4+\frac{14}{17}=\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\)
Vì : \(\left[\left(x-5\right)^2\right]^2\ge0\forall x\)
Nên : \(\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\ge\frac{14}{17}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{14}{17}\) khi x = 5
b) Vì : \(\left(\frac{3}{7}-14x\right)^2\ge0\forall x\)
Nên : \(\left(\frac{3}{7}-14x\right)^2-\frac{214}{979}\ge-\frac{214}{979}\forall x\)
Vậy GTNN của biểu thức là : \(-\frac{214}{979}\) khi \(\frac{3}{7}-14x=0\) \(\Rightarrow14x=\frac{3}{7}\) \(\Rightarrow x=\frac{3}{7}.\frac{1}{14}=\frac{3}{98}\)
b. 5x2+7,1=\(\sqrt{49}\)
\(\Rightarrow\)5x2+7,1=7
\(\Rightarrow\)5x2 = 7+7,1
\(\Rightarrow\)5x2 =14,1
\(\Rightarrow\)x2 =\(\dfrac{14,1}{5}\)
\(\Rightarrow\)x =\(\sqrt{\dfrac{14,1}{5}}\)
cho mk 1 tick đúng và câu tiếp thao sẽ hiện ra
\(15-x=\sqrt{72}\)
\(\Leftrightarrow15-x=\sqrt{36\times2}\)
\(\Leftrightarrow15-x=\sqrt{36}\times\sqrt{2}\)
\(\Leftrightarrow15-x=6\sqrt{2}\)
\(\Leftrightarrow x=15-6\sqrt{2}\)