Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. a. ( x - 34 ) . 15 = 0 b. 18 . ( x - 16 ) = 18
( x - 34 ) = 0 : 15 ( x - 16 ) = 18 : 18
( x -34 ) = 0 ( x - 16 ) = 1
x = 0 + 34 x = 1 + 16
x = 34 x = 17
\(x^2+x+35=x\left(x+1\right)+35\)
mà \(\left\{{}\begin{matrix}x\left(x+1\right)⋮2\\35⋮̸2\end{matrix}\right.\)
\(\Rightarrow x\left(x+1\right)+35⋮̸2\)
\(\Rightarrow dpcm\)
\(x^2+x+35=x\left(x+1\right)+35\)
mà \(x\left(x+1\right)\) là 2 số liên tiếp nên chia hết cho 2
35 là số lẻ không chia hết cho 2
\(\Rightarrow x\left(x+1\right)+35\) không chia hết cho 2
\(\Rightarrow dpcm\)
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
a)x+1/15 + x+2/7 + x+4/4 + 6 = 0
\(\Rightarrow\left(\frac{x+1}{15}+1\right)+\left(\frac{x+2}{7}+2\right)+\left(\frac{x+4}{4}+3\right)+\left(\frac{x+16}{\frac{1}{6}\left(x+16\right)}\right)=0\)\(\Rightarrow\frac{x+16}{15}+\frac{x+16}{7}+\frac{x+16}{4}+\frac{x+16}{\frac{1}{6}\left(x+16\right)}=0\)
\(\Rightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{7}+\frac{1}{4}+\frac{1}{\frac{1}{6}\left(x+16\right)}\right)=0\)
\(\Rightarrow x+16=0\).Do \(\frac{1}{15}+\frac{1}{7}+\frac{1}{4}+\frac{1}{\frac{1}{6}\left(x+16\right)}\ne0\)
\(\Rightarrow x=-16\)
b)tương tự
bài 1
:\(-15.67-15.\left(-33\right)-66.15\)
\(=15.\left(-67\right)-15.\left(-33\right)-15.66\)
\(=15.\left(-67+33-66\right)\)
\(=15.\left(-100\right)\)
\(=-1500\)
bài 2.
\(\left(x-2\right)^2-\left|-7\right|=9\)
\(=\left(x-2\right)^2\)
\(a,\left(x-2\right)^2-|-7|=9\)
\(\left(x-2\right)^2-7=9\)
\(\left(x-2\right)^2=16\)
\(\left(x-2\right)^2=\sqrt{16}=4^2\)
\(Th1:x-2=4\Leftrightarrow x=6\)
\(Th2:x-2=-4\Leftrightarrow x=-2\)
\(b,\left(x+4\right)\left(x^2-9\right)=0\)
\(Th1:x+4=0\Leftrightarrow x=-4\)
\(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm9\)
đúng rồi đó bạn ! quá giỏi ! mình còn không làm được !
`@` `\text {Ans}`
`\downarrow`
`c)`
`( 34 - 2x ) . ( 2x - 6 ) = 0`
`=>`\(\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=34\div2\\x=6\div2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
Vậy, `x \in {17; 3}`
`d)`
`( 2019 - x ) . ( 3x - 12 ) =0` `?`
`=>`\(\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019-0\\3x=12\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=12\div3\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)
Vậy, `x \in {2019; 4}`
`e) `
`57 . ( 9x - 27 ) = 0`
`=>`\(9x-27=0\div57\)
`=> 9x - 27 = 0`
`=> 9x = 27`
`=> x = 27 \div 9`
`=> x = 3`
Vậy, `x = 3`
`f)`
`25 + ( 15 - x ) = 30`
`=> 15 - x = 30 - 25`
`=> 15 - x = 5`
`=> x = 15 -5 `
`=> x = 10`
Vậy, `x = 10`
`g) `
`43 - ( 24 - x ) = 20`
`=> 24 - x = 43 - 20`
`=> 24 - x = 23`
`=> x = 24 - 23`
`=> x = 1`
Vậy, `x = 1`
`h) `
`2 . ( x - 5 ) - 17 = 25`
`=> 2 ( x - 5) = 25+17`
`=> 2 ( x - 5) = 42`
`=> x - 5 = 42 \div 2`
`=> x - 5 = 21`
`=> x = 21 + 5`
`=> x = 26`
Vậy, `x = 26`
`i)`
`3 . ( x + 7 ) - 15 = 27`
`=> 3(x + 7) = 27 + 15`
`=> 3(x + 7) = 42`
`=> x +7 = 42 \div 3`
`=> x + 7 = 14`
`=> x = 14 - 7`
`=> x = 7`
Vậy, `x = 7`
`j)`
`15 + 4 . ( x - 2 ) = 95`
`=> 4(x - 2) = 95 - 15`
`=> 4(x - 2) = 80`
`=> x - 2 = 80 \div 4`
`=> x - 2 = 20`
`=> x = 20 + 2`
`=> x = 22`
Vậy, `x = 22`
`k)`
`20 - ( x + 14 ) = 5`
`=> x + 14 = 20 - 5`
`=> x + 14 = 15`
`=> x = 15 - 14`
`=> x = 1`
Vậy, `x = 1`
`l) `
`14 + 3 . ( 5 - x ) = 27`
`=> 3(5 - x) = 27 - 14`
`=> 3(5 - x) = 13`
`=> 5 - x = 13 \div 3`
`=> 5 - x = 13/3`
`=> x = 5- 13/3`
`=> x = 2/3`
Vậy, `x = 2/3.`
`@` `\text {Kaizuu lv uuu}`
Vì em xài máy tính cầm tay=))
-135 nha bạn