K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

a, Thay y = - 8 vào ta được \(-2x^2=-8\Leftrightarrow x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy (P) đi qua A(2;-8) ; B(-2;-8) 

b, Hoành độ giao điểm tm pt 

\(x^2-2\left(m+1\right)x+m^2+2m=0\)

\(\Delta'=\left(m+1\right)^2-m^2-2m=1>0\)

Vậy (P) cắt (d) luôn có 2 nghiệm pb 

\(x_1=m+1-1=m\);\(x_2=m+1+1=m+2\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2m\end{matrix}\right.\)

Ta có \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< 0\)

Lại có \(-x_1=3x_2\Leftrightarrow x_1+3x_2=0\)

\(m+3\left(m+2\right)=0\Leftrightarrow4m+6=0\Leftrightarrow m=-\dfrac{3}{2}\)(tm) 

 

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

Δ=(2m-1)^2-4(2m-2)

=4m^2-4m+1-8m+8=(2m-3)^2

Để pt có 2 nghiệm pb thì 2m-3<>0

=>m<>3/2

x1^4+x2^4=17

=>(x1^2+x2^2)^2-2(x1x2)^2=17

=>[(2m-1)^2-2(2m-2)]^2-2(2m-2)^2=17

=>[4m^2-4m+1-4m+4]^2-2(4m^2-8m+4)=17

=>(4m^2-8m+5)^2-2(4m^2-8m+4)=17

Đặt 4m^2-8m+4=a

Ta sẽ có (a+1)^2-2a-17=0

=>a^2-16=0

=>a=4 hoặc a=-4(loại)

=>4m^2-8m=0

=>m=0 hoặc m=2

23 tháng 6 2017

denta , =(m -1) -(m +1 )

=\(m^2-2m+1-m-1=m^2-3m\)

phương trình có hai nghiệm phân biệt 

\(\Leftrightarrow denta>0.\)

\(\Leftrightarrow m^2-3m>0\)

\(\Leftrightarrow m\left(m-3\right)>0\)

\(\Leftrightarrow m>3ho\text{ặ}cm< 0\)

23 tháng 6 2017

m > - 1/3

NV
13 tháng 1 2022

a. Bạn tự giải

b.

\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)

Thế vào bài toán:

\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)

\(\Leftrightarrow m^2+2m+1\le0\)

\(\Leftrightarrow\left(m+1\right)^2\le0\)

\(\Rightarrow m=-1\)

28 tháng 6 2020

Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)

\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)

Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)

\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)

\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)

\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)

\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)

Tự giải tiếp :D

25 tháng 2 2022

\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m 

Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)

\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)

\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )

 

9 tháng 5 2021

a, - Xét phương trình (1) có : \(\Delta^,=b^{,2}-ac\)

\(=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5\)

\(=m^2-4m+6=m^2-4m+4+2=\left(m-2\right)^2+2\)

- Thấy \(\Delta^,\ge2>0\) => ĐPCM .

b,Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(TH_1:x_1=0\Rightarrow m=\dfrac{5}{2}\)

- Thay m và x1 vào một PT ta được : x2 = -3 ( L )

=> Không tồn tại x1 = 0 để nghiệm còn lại lớn hơn 0 .

\(TH_2:x_1< 0< x_2\)

\(\Leftrightarrow ac< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

Vậy ...

 

 

 

 

 

17 tháng 6 2022

ko biết làm

a) Thay m=-2 vào phương trình, ta được:

\(x^2-\left(-x\right)-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

a=1; b=1; c=-2

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)