Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
14 x 35 x 5 + 10 x 25 x 7 + 20 x 70
= 70 x 35 + 25 x 70 + + 20 x 70
= 70 x ( 35 + 25 + 20 )
= 70 x 80
= 5600
b)
53 x ( 51 + 4 ) + 53 x ( 49 + 96 ) x 53
= 53 x 55 + 53 x 145 x 53
= 53 x ( 55 + 155 ) x 53
= 53 x 200 x 53
= 10600 x 53
= 561800
c) chịu ( đề sao sao ấy ~_~)
Số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là một sốtự nhiên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số tự nhiên. Số chính phương hiển thị diện tích của một hình vuông có chiều dài cạnh bằng số nguyên kia.
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)
\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)
\(=25+\dfrac{25}{51}\)
\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)
Giả sử tồn tại n thoả mãn đề bài.
Dễ thấy \(2019^{2018}+1\) chẵn nên \(n^3+2018n\), suy ra n chẵn.
Do đó \(n^3+2018n⋮4\).
Mặt khác ta có \(2019^{2018}\equiv\left(-1\right)^{2018}\equiv1\left(mod4\right)\Rightarrow2019^{2018}+1\equiv2\left(mod4\right)\).
Điều này là vô lí vì VT chia hết cho 4 còn VP không chia hết cho 4.
Vậy không tồn tại n thoả mãn đề bài.
-8/12 rút gọn bằng-2/3; 15/-60 =-1/4; -16/-72=2/9;35/14.15=1/6
Phần bể chưa có nước bằng:
1 - \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) (thể tích bể)
Bể sẽ đầy sau:
\(\dfrac{3}{4}\) : \(\dfrac{1}{8}\) = 6 (giờ)
Đs...
14 . 35 . 5 + 10 . 25 . 7 + 20 . 7
= 70 . 7 . 5 + 250 . 7 + 20 . 7
= 7 ( 350 + 250 + 20 )
= 7 . 620
= 4340