Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow14\sqrt{x+35}+6\sqrt{x+1}-84-\sqrt{\left(x+35\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x+35}-6\right)\left(14-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow x=195;1\)
tick nha
a) \(1+\sqrt{3}+\sqrt{5}+\sqrt{15}\)
\(=\left(1+\sqrt{3}\right)+\sqrt{5}\left(1+\sqrt{3}\right)\)
\(=\left(1+\sqrt{3}\right)\left(1+\sqrt{5}\right)\)
b) \(\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}\)
\(=\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{7}\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{7}\right)\)
c) \(\sqrt{35}-\sqrt{15}+\sqrt{14}-\sqrt{6}\)
\(=\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{2}\right)\)
e) \(xy+y\sqrt{x}+\sqrt{x}+1\)
\(=y\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}+1\right)\left(y\sqrt{x}+1\right)\)
g) \(3+\sqrt{x}+9-x\)
\(=\left(3+\sqrt{x}\right)+\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)\)
\(=\left(3+\sqrt{x}\right)\left(4-\sqrt{x}\right)\)
a, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}\)
\(=\dfrac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{3}}{\sqrt{7}}\)
b, \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
\(=\dfrac{2.\sqrt{5}.\sqrt{3}-2.\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{3}+\sqrt{2}.\sqrt{3}}{2.\sqrt{5}-2.\sqrt{2}.\sqrt{5}-\sqrt{3}+\sqrt{2}.\sqrt{3}}\)
\(=\dfrac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}.\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}.\left(1-\sqrt{2}\right)-\sqrt{3}.\left(1-\sqrt{2}\right)}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{3}\right).\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right).\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)
c, \(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}=\dfrac{\sqrt{x}.\sqrt{x}+\sqrt{x}.\sqrt{y}}{\sqrt{y}.\sqrt{y}+\sqrt{x}.\sqrt{y}}\)
\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}}{\sqrt{y}}\)
Chúc bạn học tốt!!!
d) \(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\) = \(-\dfrac{\sqrt{a}\left(1+\sqrt{ab}\right)-\sqrt{b}\left(1+\sqrt{ab}\right)}{1-ab}\)
= \(-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(1+\sqrt{ab}\right)}{\left(1+\sqrt{ab}\right)\left(1-\sqrt{ab}\right)}\) = \(-\dfrac{\sqrt{a}-\sqrt{b}}{1-\sqrt{ab}}\) = \(\dfrac{\sqrt{b}-\sqrt{a}}{1-\sqrt{ab}}\)
a) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\frac{3}{7}}\)
b) \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}=\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}=\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)
c) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}\) (Bạn tự thêm đk)
d) \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\) (Bạn tự thêm đk)
Đặt \(a=\sqrt{6-\sqrt{35}};b=\sqrt{6+\sqrt{35}}\left(a;b\ge0\right)\)
Ta có hpt: \(\left\{{}\begin{matrix}a^x+b^x=12\\a^2+b^2=12\end{matrix}\right.\)\(\Rightarrow x=2\)
Vậy pt có tập nghiệm là x=2.
Akai HarumaNguyễn Việt LâmMysterious PersonDƯƠNG PHAN KHÁNH DƯƠNG Kiểm tra giùm e xem có đúng không? Sao thấy dễ thế.
Đặt \(\left(\sqrt{6-\sqrt{35}}\right)^x=a>0\Rightarrow\left(\sqrt{6+\sqrt{35}}\right)^x=\dfrac{1}{a}\)
Pt trở thành: \(a+\dfrac{1}{a}=12\Leftrightarrow a^2-12a+1=0\Rightarrow\left[{}\begin{matrix}a=6+\sqrt{35}\\a=6-\sqrt{35}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(\sqrt{6-\sqrt{35}}\right)^x=\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=6+\sqrt{35}\\\left(\sqrt{6-\sqrt{35}}\right)^x=\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=6-\sqrt{35}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=\left(6-\sqrt{35}\right)^{-1}\\\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=\left(6-\sqrt{35}\right)^1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{x}{2}=1\end{matrix}\right.\) \(\Rightarrow x=\pm2\)
ĐK: \(x\ge-1\)
pt <=> \(\left(14\sqrt{x+35}-84\right)+\left(6\sqrt{x+1}-\sqrt{x^2+36x+35}\right)=0\)
<=> \(14\left(\sqrt{x+35}-6\right)+\sqrt{x+1}\left(6-\sqrt{x+35}\right)=0\)
<=> \(\left(\sqrt{x+35}-6\right)\left(11-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x+35}-6=0\\11-\sqrt{x+1}=0\end{cases}}\)Em làm tiếp nhé!