Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)
\(2C=1-\frac{1}{3^{99}}< 1\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
1.
B = 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1
3B = 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
3B + B = ( 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3 ) + ( 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1 )
4B = 3101 + 1
B = \(\frac{3^{101}+1}{4}\)
Có 2 dạng tổng quát
1^3+2^3+..+n^3=n^2.(n+1)/4
1^3+2^3+..+n^3=(1+2+...+n)^2
A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
= 1 . 51
= 51
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
= 2 . 100
= 200
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
= 1 . 304
= 304
D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
= 1 . 100
= 100
E = 22 + 42 + ... + ( 2n )2
= 22 . ( 2n )2
= 2n4
Ta có: 3^2x.3^1+9^x+9^1=120-12=108
=3^2x . 3+9^x+9=108
3^2x . 3+9^x=108-9=99
3^2x . 3+(3^2)^x=99
3^2x .4=99
Cậu kiểm tra lại đề bài được ko
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};....;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)
Vậy \(C=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
a/ \(A=1+3+3^2+..........+3^{55}\)
\(\Leftrightarrow3A=3+3^2+...........+3^{55}+3^{56}\)
\(\Leftrightarrow3A-A=\left(3+3^2+........+3^{56}\right)-\left(1+3+....+3^{55}\right)\)
\(\Leftrightarrow2A=3^{56}-1\)
\(\Leftrightarrow A=\frac{3^{56}-1}{2}\)
Đặt A=1-2+22-23+24-25+....+2100
=>2A=2-22+23-24+25-26+...+2101
=>2A+A=(2-22+23-24+25-26+...+2101)-(1-2+22-23+24-25+...+2100)
=>3A=2-22+23-24+25-26+....+2101-1+2-22+23-24+25-...-2100
=>3A=2101-1
=>A=\(\frac{2^{101}-1}{3}\)
Đặt A = 1-2+22-23+24-25+...+2100
2A = 2-22+23-24+25-26+...+2101
3A = 2A + A = 1+2101
=> A = \(\frac{2^{101}+1}{3}\)
\(3^3.225.45=3^3.25.9.5.9=3^3.5^2.3^2.5.3^2=3^7.5^3\)
\(36.30.125=6^2.5.6.5^3=6^3.5^4\)
\(a.a^5:a^2=a^6:a^2=a^4\)
\(a^8:a^6.a^2=a^2.a^2=a^4\)
\(a^2+a^4:a^2=a^2+a^2=2.a^2\)
A = \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) + ...........+ \(\dfrac{1}{4^{100}}\)
A = \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\)+...+ \(\dfrac{1}{4^{99}}\)+ \(\dfrac{1}{4^{100}}\)
4 \(\times\) A = \(\dfrac{1}{4}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) +...+ \(\dfrac{1}{4^{99}}\)
4A - A = \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)
3A = \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)
A = ( \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)): 3
A = \(\dfrac{1}{12}\) - \(\dfrac{1}{3\times4^{100}}\)
Đặt A=1/4^2 +...+1/4^100
4A=1/4+...+1/4^99
4A-A=(1/4+...+1/4^99)-(1/4^2+...+1/4^100)
3A=1/4-1/4^100
A=(1/4-1/4^100)/3
Vậy...