K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}=\frac{0,33x}{2009}\)

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33x}{2009}\)

\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{1}{1}-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{100}{100}-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{99}{100}=\frac{0,33x}{2009}\)

\(\Rightarrow2009.99=100.0,33x\)

\(\Rightarrow2009.99=33x\)

\(\Rightarrow2009.99:33=x\)

\(\Rightarrow2009.3=x\)

\(\Rightarrow6027=x\)

Vậy \(x=6027\)(MK KO CHẮC NÓ ĐÚNG NHÉ )

6 tháng 3 2016

\(\frac{3}{1.4}+\frac{3}{4.7}+..+\frac{3}{97.100}=\frac{0,33x}{2009}\)

\(1-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{100}=\frac{0,33x}{2009}\)

\(1-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{99}{100}=\frac{0,33x}{20009}\Rightarrow2009.99=100.0,33x\)

x=6027

7 tháng 6 2020

Ta có : \(\frac{1}{4}+\frac{1}{28}+....+\frac{1}{9700}=\frac{0,33x}{2009}\)

=> \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}=\frac{0.99x}{2009}\)

=> \(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{33}{100}=\frac{0,33x}{2009}\Rightarrow33.2009=100.0,33x\)

=> 33.2009 = 33x

=> x = 2009

7 tháng 6 2020

Thanks bn nhìu nha, mình sẽ K cho bn ngay. Bn kb với mình nha.

19 tháng 4 2020

\(3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)

\(3M=\frac{4-1}{1.4}+\frac{7-4}{4.7}+...+\frac{100-97}{97.100}\)

\(3M=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

\(3M=1-\frac{1}{100}\)

\(3M=\frac{99}{100}\)

\(M=\frac{33}{100}\)

4 tháng 9 2016

A = 1/4 + 1/28 + 1/70 +...+ 1/9700

A = 1/1.4 + 1/4.7 + 1/7.10 +...+ 1/97.100

3A = 3/1.4 + 3/4.7 + 3/7.10 +...+ 3/97.100

3A = 1 - 1/100

3A = 99/100

A=99/100:3=33/100

4 tháng 9 2016

\(=\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{97.100}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

31 tháng 8 2016

\(A=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)

\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\)

\(A=\frac{3}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\right)\)

\(A=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)

\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{1}{3}\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

27 tháng 3 2018

\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)

\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{100}{100}-\frac{1}{100}\)

\(=\frac{99}{100}\)

9 tháng 2 2018

=> 3/1.4+3/4.7+.....+3/97.100 = 0,99x/2014

=> 1-1/4+1/4-1/7+....+1/97-1/100 = 0,99x/2014

=> 0,99x/2014 = 1-1/100 = 99/100

=> x = 99/100 : 0,99/2014 = 2014

Vậy x = 2014

Tk mk nha

27 tháng 6 2017

Đặt :

\(M=\dfrac{1}{4}+\dfrac{1}{28}+\dfrac{1}{70}+................+\dfrac{1}{550}\)

\(\Rightarrow M=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+..................+\dfrac{1}{22.25}\)

\(\Rightarrow3M=\dfrac{3}{1.4}+\dfrac{3}{4.7}+.................+\dfrac{3}{22.25}\)

\(\Rightarrow3M=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.........+\dfrac{1}{22}-\dfrac{1}{25}\)

\(\Rightarrow3M=1-\dfrac{1}{25}\)

\(\Rightarrow3M=\dfrac{24}{25}\)

\(\Rightarrow M=\dfrac{24}{75}\)

27 tháng 6 2017

Đặt:

\(A=\dfrac{1}{4}+\dfrac{1}{28}+\dfrac{1}{70}+.....+\dfrac{1}{550}\)

\(A=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+.....+\dfrac{1}{22.25}\)

\(A=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{22}-\dfrac{1}{25}\right)\)

\(A=\dfrac{1}{3}\left(1-\dfrac{1}{25}\right)=\dfrac{1}{3}.\dfrac{24}{25}=\dfrac{25}{72}\)