Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2^2\cdot9\cdot\dfrac{1}{6\cdot9}\cdot\dfrac{4^2}{9^2}=\dfrac{2^2}{6}\cdot\dfrac{2^4}{3^4}=\dfrac{2^6}{2\cdot3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)
b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)
c: \(=\dfrac{\left(\dfrac{1}{2}\right)^3\cdot2^3\cdot\left(\dfrac{1}{2}\right)^2}{\left(-8\right)^2\cdot16}\cdot2^6=\dfrac{\dfrac{1}{2^2}}{64\cdot16}\cdot64=\dfrac{1}{4}:16=\dfrac{1}{64}=\left(\dfrac{1}{8}\right)^2\)
a: \(=2^2\cdot9\cdot\dfrac{1}{3^3\cdot2}\cdot\dfrac{2^4}{3^4}=\dfrac{2^4\cdot2^2}{2}\cdot\dfrac{9}{3^3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)
b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)
c: \(=\dfrac{\dfrac{1}{2^3}\cdot\dfrac{1}{2^2}\cdot8}{\left(-8\right)^2\cdot2^4}\cdot2^6=\dfrac{1}{2^2}\cdot2^6:2^{10}=\dfrac{2^4}{2^{10}}=\dfrac{1}{2^6}=\left(\dfrac{1}{8}\right)^2\)
a: \(=\dfrac{3^3\cdot2^6}{3^{-4}\cdot2^6}=3^7\)
b: \(=\left(\dfrac{3}{7}\right)^5\cdot\left(\dfrac{3}{7}\right)\cdot\dfrac{5^6}{3^6}:\left(\dfrac{625}{343}\right)^2\)
\(=\dfrac{3^6}{7^6}\cdot\dfrac{5^6}{3^6}:\dfrac{5^8}{7^6}\)
\(=\dfrac{1}{5^2}\)
c: \(=5^{4+3}\cdot\left(\dfrac{5}{2}\right)^{-5}\cdot\dfrac{1}{25}\)
\(=5^5\cdot\left(\dfrac{2}{5}\right)^5=2^5\)
a: \(=\dfrac{3^3\cdot2^6}{3^{-4}\cdot2^6}=3^7\)
b: \(=\left(\dfrac{3}{7}\cdot\dfrac{5}{3}\right)^6\cdot\dfrac{5}{3}\cdot\dfrac{3}{7}:\left(\dfrac{7^3}{5^4}\right)^{-2}\)
\(=\left(\dfrac{5}{7}\right)^6\cdot\dfrac{5}{7}\cdot\left(\dfrac{5}{7}\right)^6\cdot5^2\)
\(=\left(\dfrac{5}{7}\right)^{13}\cdot5^2\)
c: \(=5^4\cdot2.5^{-5}\cdot125\cdot0.04\)
\(=5^4\cdot5\cdot\left(\dfrac{5}{2}\right)^{-5}\)
\(=5^5\cdot\left(\dfrac{2}{5}\right)^5=2^5\)
a, \(\left(4.2\right)^5:\left(2^3.\dfrac{1}{16}\right)=8^5:\left(2^3.\dfrac{1^4}{2^4}\right)=\left(2^3\right)^5:\dfrac{2^3.1^4}{2^4}=2^{15}:\dfrac{1}{2}=2^{15}.2=2^{16}\)
\(b,\dfrac{2^2.4.32}{2^2.2^5}=\dfrac{2^2.2^4.2^5}{2^2.2^5}=2^4=16\)
\(a,\dfrac{\left(4.2\right)^5}{2^3.\dfrac{1}{16}}=\dfrac{\left(2^3\right)^5}{2^3.2^{-4}}=\dfrac{2^{15}}{2^{-1}}=2^{16}\)
b,\(\dfrac{2^2.4.32}{2^2.2^5}=\dfrac{2^2.2^2.2^5}{2^2.2^5}=2^2=4\)
`(1 1/4)^10 . (2/5)^20`
`=(5/4)^10 . (2/5)^20`
`=(5^10 .2^20)/(4^10 .5^20)`
`=(5^10 .4^10)/(4^10 .5^20)`
`=1/(5^10)`
`=(1/5)^10`
1.
a) x : \(\left(\dfrac{3}{4}\right)^3\) =\(\left(\dfrac{3}{4}\right)^3\)
x = \(\left(\dfrac{3}{4}\right)^3.\left(\dfrac{3}{4}\right)^3\)
x = \(\dfrac{3}{4}^{3+3}\)
x = \(\dfrac{3}{4}^6\)
x = \(\dfrac{729}{4096}\)
b) \(\left(\dfrac{2}{5}\right)^5.x=\left(\dfrac{2}{5}\right)^8\)
x = \(\left(\dfrac{2}{5}\right)^8:\left(\dfrac{2}{5}\right)^5\)
x = \(\dfrac{2}{5}^{8-5}\)
x = \(\dfrac{2}{5}^3\)
x = \(\dfrac{8}{5}\)
2.
(0,36)\(^8\) \([\left(0,6\right)^3]^8\) = (0,6)\(^{3.8}\) = ( 0,6)\(^{24}\)
( 0,216)\(^4\) = \([\left(0,6\right)^3]^4\) = (0.6)\(^{3.4}\) = ( 0,6)\(^{12}\)
\(x:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^2\)
\(x=\left(\dfrac{3}{4}\right)^2.\left(\dfrac{3}{4}\right)^3\) <=> \(x=\left(\dfrac{3}{4}\right)^{2+3}\)
=> \(x=\left(\dfrac{3}{4}\right)^5\)
b, \(\left(\dfrac{2}{5}\right)^5.x=\left(\dfrac{2}{5}\right)^8\)
\(x=\left(\dfrac{2}{5}\right)^8:\left(\dfrac{2}{5}\right)^5\Leftrightarrow x=\left(\dfrac{2}{5}\right)^{8-5}\)
=>\(x=\left(\dfrac{2}{5}\right)^3\)
bài 2 : Với bài này ta cần áp dụng quy tắc: \(\left(x^m\right)^n=x^{m.n}\)
\(0,36^8=\left[\left(0,6\right)^2\right]^8=\left(0,6\right)^{16}\)
\(0,216^4=\left[\left(0,6\right)^3\right]^4=\left(0,6\right)^{12}\)
D, Vì 3^2=9 và -3^2=9 còn 5^2=25
D