Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}=\dfrac{2.\left[\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right]}{4.\left[\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right]}\)\(=\dfrac{2}{4}=\dfrac{1}{2}\)
\(B=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}=\dfrac{2.\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4.\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{1}{2}\)
\(\left(x-2\right)\left(x-4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2< 0\\x-4>0\end{matrix}\right.=>4< x< 2\left(1\right)\\\left\{{}\begin{matrix}x-2>0\\x-4< 0\end{matrix}\right.=>2< x< 4\left(2\right)}\end{matrix}\right.\)(1 ) vô lý=> loại
=> (x-2).(x-4)<0 <=> 2<x<4
b. ta có\(x^2+1>0\forall x\)
=>(x2 -1).(x2+1)<0 <=> (x2 -1)<0 <=> x2<1
<=> -1<x<1
câu c bạn làm tương tự
\(xy-2x-3y=5\)
\(\Leftrightarrow x\left(y-2\right)-\left(3y-6\right)=11\)
\(\Leftrightarrow x\left(y-2\right)-3\left(y-2\right)=11\)
\(\Leftrightarrow\left(x-3\right)\left(y-2\right)=11\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=1\\y-2=11\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-3=11\\y-2=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-3=-11\\y-2=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-3=-1\\y-2=-11\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=13\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=14\\y=3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-8\\y=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=2\\y=-9\end{matrix}\right.\)
\(\dfrac{1}{3}x.\dfrac{2}{5}\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{3}x=0\\\dfrac{2}{5}\left(x-1\right)=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy x = 0 hoặc x = 1
\(\dfrac{1}{3}x.\dfrac{2}{5}\left(x-1\right)=0\\ =>\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)