Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+..............+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+..............+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+..............+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{30}{93}\)
\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{30}{93}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{30}{93}=\dfrac{1}{2x+3}\)
\(\Rightarrow\dfrac{1}{93}=\dfrac{1}{2x+3}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(\Rightarrow x=45\)
Vậy \(x=45\) là giá trị cần tìm
~ Chúc bn học tốt ~
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93
1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93
1/2(1/3-1/2x+3)=15/93
=>1/3-1/2x+3=10/31
=>1/2x+3=1/93
=>2x+3=93
2x=93-3=90
=>x=45
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(x=45\)
Vậy \(x=45\).
\(A=\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{100}{609}\\ \)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{1}{3}-\frac{1}{2x+3}\)\(=\frac{2x}{3\left(2x+3\right)}\)
\(A=\frac{x}{3\left(2x+3\right)}=\frac{100}{609}=\frac{100}{3.203}=\frac{100}{3\left(2.100+3\right)}\)\(\Rightarrow x=100\)
Đặt A = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{5}{31}\)
2A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
2A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{\left(2x+1\right)}-\frac{1}{2x+3}=\frac{10}{31}\)
2A = \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
Ta có : \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
=> 2x + 3 = 93
2x = 90
x = 45
\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{\left(2x-1\right)\cdot\left(2x+1\right)}=\dfrac{49}{99}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x-1\right)\cdot\left(2x+1\right)}=\dfrac{98}{99}\)
\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\)
\(1-\dfrac{1}{2x+1}=\dfrac{98}{99}\)
\(\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)
\(\dfrac{2x}{2x+1}=\dfrac{98}{99}\)
=> 2x=98
=> x=49
1/3.5 + 1/5.7 +......+ 1/(2x+1)(2x+3) =100/609
2/3.5 + 2/5.7 +......+ 1/(2x+1)(2x+3)=200/609
1/3 - 1/5 + 1/5 - 1/7 +.....+1/2x+1 - 1/2x+3=200/609
1/3 - 1/2x+3 = 200/609
1/2x+3 = 1/3 - 200/609
Đoạn còn lại tự làm nhá!