K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101

A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)

A = (12 + 32 + 52 + … + 972 + 992) + 2.(1 + 3 + 5 + … + 97 + 99).

Đặt B = 12 + 32 + 52 + … + 992

=> B = (12 + 22 + 32 + 42 + … + 1002) – 22.(12 + 22 + 32 + 42 + … + 502)

Tính dãy tổng quát C = 12 + 22 + 32 + … + n2

C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]

C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)

C = = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6

Áp dụng vào B ta được:

B = 100.101.201 : 6 – 4.50.51.101 : 6 = 166650

=> A = 166650 + 2.(1 + 99).50 : 2

=> A = 166650 + 5000 = 172650.

Vậy: A = 172650.

Chúc bạn học tốt !!!

8 tháng 1 2017

cau nay chinh con me no

8 tháng 1 2017

con nay la 1209876

111111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%

25 tháng 3

ính giá trị biểu thức:

(1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 3^5 + (1/3^5 + 1/3^6 + 1/3^7 + 1/3^8) . 3^9 + ... + (1/3^97 + 1/3^98 + 1/3^99 + 1/3^100) . 3^101

Ta có thể thực hiện theo các bước sau:

Bước 1: Nhóm các hạng tử:

Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:

(1/3^n + 1/3^(n+1) + 1/3^(n+2) + 1/3^(n+3)) . 3^(n+4)

Với n = 1, 5, 9, ..., 97.

Bước 2: Tính giá trị từng nhóm:

Xét nhóm thứ nhất:

(1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 3^5

= (1/3 + 1/3^2 + 1/3^3 + 1/3^4) . (3^4 . 3)

= (1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 81

Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:

1 + 1/3 + 1/3^2 + 1/3^3 = (1 - (1/3)^4) / (1 - 1/3) = 80/81

Do đó, giá trị của nhóm thứ nhất là:

(80/81) . 81 = 80

Tương tự, ta có thể tính giá trị các nhóm tiếp theo:

Giá trị nhóm thứ hai: (80/81) . 3^4 . 81 = 80 . 3^4

Giá trị nhóm thứ ba: (80/81) . 3^8 . 81 = 80 . 3^8

...

Giá trị nhóm thứ 25: (80/81) . 3^96 . 81 = 80 . 3^96

Bước 3: Cộng các giá trị từng nhóm:

Giá trị của biểu thức là tổng giá trị của các nhóm:

80 + 80 . 3^4 + 80 . 3^8 + ... + 80 . 3^96

= 80 (1 + 3^4 + 3^8 + ... + 3^96)

Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:

Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.

Tổng của cấp số nhân này là:

(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80

Bước 5: Thay giá trị và kết luận:

Thay giá trị tổng vào biểu thức, ta được:

80 (1 + 3^4 + 3^8 + ... + 3^96) = 80 . (1 - 3^100) / -80

= (1 - 3^100)

Vậy, giá trị của biểu thức là 1 - 3^100.

Lưu ý:

  • Việc sử dụng công thức khai triển tổng cấp số nhân giúp đơn giản hóa việc tính giá trị các nhóm.
  • Cần chú ý đến số hạng đầu tiên, công bội và số hạng của cấp số nhân khi áp dụng công thức.

Kết quả:

Giá trị của biểu thức là 1 - 3^100.

20 tháng 1 2017

b) 1-2-3+4+5-6-7+8+......+1989-1990-1991+1992+1993

=(1-2-3+4)+(5-6-7+8)+.....+(1989-1990-1991+1992)+1993

=0+0+...+0+1993=1993.

Số các số hạng là:

(2000 - 100) : 1 + 1 = 1901

Tổng là:

(2000 + 100) x 1901 : 2 = 1996050

Đáp số : 1996050

= [(2000-100)+1]: 2 x (2000+100)= 1996050

4 tháng 7 2015

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000

13 tháng 9 2018

 1 x 3 + 3 x 5 + 5 x 7 + ... + 99 x 101

= 1 x 101

= 101

(loại bỏ hết các số giống nhau để được 1 và 101)

Học tốt ^-^

28 tháng 7 2018

a, S= 1/1*2 + 1/2*3 + 1/3*4 +...+1/99*100
    S= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
    S= 1/1 - 1/100
    S= 100/100 - 1/100
    S= 99/100

b, S= 1/1*3 + 1/3*5 + 1/5*7 +...+1/99*101
    S= 1/2* (2/1*3 + 2/3*5 + 2/5*7 +...+ 2/99*101)
    S= 1/2* (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/99 - 1/101)
    S= 1/2* (1/1 - 1/101)
    S= 1/2* (101/101 - 1/101)
    S= 1/2* 100/101
    S= 50/101
Chúc bạn học tốt nha