Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m=1+3+3^2+...+3^{100}\)
\(3m=3+3^2+...+3^{101}\)
\(\Rightarrow3m-m=3^{101}-1\)
\(\Leftrightarrow m=\frac{3^{101}-1}{2}\)
\(M=1+3+3^2+...+3^{100}\)
\(\Rightarrow\)\(3M=3+3^2+3^3+...+3^{101}\)
\(-M=1+3+3^2+...+3^{100}\)
\(\Rightarrow\)\(2M=3^{101}-1\)
\(\Rightarrow M=\frac{3^{101}-1}{2}\)
a)\(12:\left\{400:\left[500-\left(125+25×7\right)\right]\right\}\)
\(12:\left\{400:\left[500-300\right]\right\}\)
\(12:2\)
\(6\)
b)\(\left[\left(7-3^3:3^2\right):2^2+99\right]-100\)
\(=\left[4:4+99\right]-100\)
\(=100-100\)
\(=0\)
\(c,3^2×\left[\left(5^2-3\right):11\right]-2^4+2×10^3\)
\(=9×2-16+2×10000\)
\(=18-16+20000\)
\(=20002\)
=> \(3M=3^2+3^3+3^4+...+3^{101}\)
=> \(3M-M=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
=> \(2M=3^{101}-3\)
=> \(M=\frac{3^{101}-3}{2}\).
\(2N=2-2^2+2^3-2^4+...-2^{100}+2^{101}\)
=> \(2N-N=\left(2-2^2+2^3-2^4+...-2^{100}+2^{101}\right)-\left(1-2+2^2-2^3+...-2^{99}+2^{100}\right)\)
=> \(N=2^{101}-1\)
M = 3+3^2+3^3+....+3^100
3M = 3^2+3^3+...+3^101
3M - M = (3^2-3^2) + ... + (3^100 - 3^100) + 3^101 - 3
2M = 3^101 - 3
Vậy M = \(\frac{3^{101}-3}{2}\)
a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6D=1-\frac{1}{7^{100}}\)
\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)
1. 1-2+3-4+5-6-.....+99-100
=(1-2)+(3-4)+(5-6)+...+(99-100) (50 cặp)
=(-1)+(-1)+(-1)+...+(-1) (50 số -1)
=(-1).50
=-50
2.1+3-5-7+9+11-.....-397-399
=(1+3-5-7)+(9+11-13-15)+....+(387+389-391-393)+395-397-399 (99 cặp)
=(-8)+(-8)+(-8)+...+(-8)+(-401)(có 99 có -8)
=(-8).99+(-401)
=(-792)+(-401)
=-1193
3. 1-2-3+4+5-6-7+...+96+97-98-99+100
=(1-2-3+4)+(5-6-7+8)+...+(93-94-95+96)+(97-98-99+100) (25 cặp)
=0+0+0+...+0
=0
4. A=2100-299-298-.....-22-2-1
2A=2101-2100-299-....-23-22-2
2A-A=A=2101-2100-2100+1
A=2101-2.2100+1
A=2101-2101+1
A=1
1) Đặt 3+3^2+3^3+ ... +3^99+3^100 là A
Ta có:
A = 3+3^2+3^3+ ... +3^99+3^100
A = (3+3^2)+(3^3+3^4)+ ... +(3^99+3^100)
A = 3.4 + 3^3.4 + ... + 3^99.4
A = 4.(3+3^3+...+3^99)
=> A chia hết cho 4
2) Để 35x7y chia hết cho 2; 5 => y = 0
Để 35x70 chia hết cho 3 => (3+5+x+7+0) chia hết cho 3 => (15+x) chia hết cho 3
=> x = 0;3;6;9
Vậy y = 0; x = 0; 3; 6; 9