K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2023

\(\left(\dfrac{13}{2020}+\dfrac{23}{2021}+\dfrac{33}{2022}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

\(\left(\dfrac{13}{2020}+\dfrac{23}{2021}+\dfrac{33}{2022}\right).\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\)

\(\left(\dfrac{13}{2020}+\dfrac{23}{2021}+\dfrac{33}{2022}\right).0\)

=\(0\)

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

12 tháng 3 2023

tham khảo:

https://hoidap247.com/cau-hoi/3987981

12 tháng 3 2023

thứ 2 bạn thi kệ bn :v

AH
Akai Haruma
Giáo viên
29 tháng 4 2022

Lời giải:

$6A=\frac{6^{2021}+6}{6^{2021}+1}=1+\frac{5}{6^{2021}+1}>1+\frac{5}{6^{2022}+1}$
$=\frac{6^{2022}+6}{6^{2022}+1}=6.\frac{6^{2021}+1}{6^{2022}+1}=6B$

$\Rightarrow A>B$

7 tháng 5 2023

=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022

=1+0+0+.....+0+2022

=2023

số năm nay luôn

 

24 tháng 7 2021

dễ ợt

 

11 tháng 1 2023

Ta có: 1+2-3-4+5+6-7-8+.....-2019-2020+2021+2022

=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022

=1+0+0+.....+0+2022

=2023