K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2023

Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(3\cdot A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(3A-A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)

\(2A=1-\dfrac{1}{3^{100}}\)

\(\Rightarrow A=\dfrac{3^{100}-1}{3^{100}}:2=\dfrac{3^{100}-1}{2\cdot3^{100}}\)

#\(Toru\)

27 tháng 9 2023

Đặt `A=1/3+1/(3^2)+...+1/(3^100)`

`3A=1+1/3+...+1/(3^99)`

`3A-A=(1+1/3+...+1/(3^99))-(1/3+1/(3^2)+...+1/(3^100))`

`2A=1-1/(3^100)`

`A=(1-1/(3^100))/2`

9 tháng 10 2020

1/ 3x-1 + 5.3x-1 = 162

3x-1(1 + 5) = 162

3x-1 = \(\frac{162}{6}\)

3x-1 = 27

3x-1 = 33

x - 1 = 3

x = 4

2/ B = 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1

\(\Rightarrow\) 3B = 3.3100 - 3.399 + 3.398 - 3.397 + ... + 3.32 - 3.3 + 3.1

= 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3

Ta có:

4B = 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100 - 399 + 398 - 397 + ... + 32 - 3 + 1)

= 3101 + 3100 - 3100 + 399 - 399 + 398 - 398 + ... + 3 - 3 + 1

= 3101 + 1

\(\Rightarrow\) B = \(\frac{3^{101}+1}{4}\)

10 tháng 11 2020

Cảm ơn bạn nhiều nha

Gọi biểu thức trên là Acó:

A=1+1/2+1/2^2+1/2^3+...+1/2^99+1/2^100

2A=1/2+1/2^2+1/2^3+....+1/2^99+1/2^100+1/2^101

2A-A=(1/2+1/2^2+1/2^3+....+1/2^99+1/2^100+1/2^101)-(1+1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)

A=1/2^101-1

A=-1

6 tháng 11 2019

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

DD
28 tháng 3 2022

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(A=\frac{1}{2}-\frac{1}{2.3^{100}}\)

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2^2A=1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

\(\Rightarrow4A=1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

\(\Rightarrow4A-A=1-\frac{1}{2^{100}}< 1\Rightarrow3A< 1\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)

14 tháng 8 2017

Ta có:

\(S=\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{100}}\)

\(\Rightarrow7S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)

\(\Rightarrow7S-S=1-\frac{1}{7^{100}}\)

\(\Rightarrow6S=1-\frac{1}{7^{100}}\)

\(\Rightarrow S=\left(1-\frac{1}{7^{100}}\right)\div6=\frac{1}{6}-\frac{1}{7^{100}\times6}\)

Ta có: \(A=100^2+200^2+300^2+...+1000^2\)

\(=100^2\cdot\left(1+2^2+3^2+...+10^2\right)\)

\(=100^2\cdot385=3850000\)

6 tháng 1 2021

3800