K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 6 2020

\(E=\frac{cosx}{sinx}+\frac{sinx}{1+cosx}=\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\frac{cosx+1}{sinx\left(1+cosx\right)}=\frac{1}{sinx}\)

17.

\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{12}{13}\)

\(0< b< \frac{\pi}{2}\Rightarrow sinb>0\Rightarrow sinb=\sqrt{1-cos^2b}=\frac{4}{5}\)

\(sin\left(a+b\right)=sina.cosb+cosa.sinb=\frac{5}{13}.\frac{3}{5}-\frac{12}{13}.\frac{4}{5}=-\frac{33}{65}\)

18.

\(K=sin\frac{2\pi}{7}+sin\frac{6\pi}{7}+sin\frac{4\pi}{7}\)

\(\Leftrightarrow K.sin\frac{\pi}{7}=sin\frac{\pi}{7}.sin\frac{2\pi}{7}+sin\frac{\pi}{7}.sin\frac{4\pi}{7}+sin\frac{\pi}{7}.sin\frac{6\pi}{7}\)

\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\frac{3\pi}{7}+cos\frac{\pi}{7}-cos\frac{5\pi}{7}+cos\frac{5\pi}{7}-cos\frac{7\pi}{7}\right)\)

\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\pi\right)=\frac{1}{2}\left(cos\frac{\pi}{7}+1\right)=\frac{1}{2}\left(2cos^2\frac{\pi}{14}-1+1\right)=cos^2\frac{\pi}{14}\)

\(\Leftrightarrow K.2.sin\frac{\pi}{14}.cos\frac{\pi}{14}=cos^2\frac{\pi}{14}\)

\(\Leftrightarrow2K=\frac{cos\frac{\pi}{14}}{sin\frac{\pi}{14}}=cot\frac{\pi}{14}=a\Rightarrow K=\frac{a}{2}\)

\(\cos a=\dfrac{-12}{13}\)

\(\sin b=\dfrac{4}{5}\)

\(\sin\left(a+b\right)=\sin a\cos b+\sin b\cos a\)

\(=\dfrac{5}{13}\cdot\dfrac{3}{5}+\dfrac{4}{5}\cdot\dfrac{-12}{13}=\dfrac{-45}{65}=\dfrac{-9}{13}\)

31 tháng 3 2021

Cos 2a mà?

NV
20 tháng 4 2022

\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow sina< 0\)

\(\Rightarrow sina=-\sqrt{1-cos^2a}=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5}\)

\(\Rightarrow sin2a=2sina.cosa=2.\left(-\dfrac{4}{5}\right).\left(\dfrac{3}{5}\right)=-\dfrac{24}{25}\)

Câu sau có nhầm đề ko nhỉ?

\(sin\left(\pi-\dfrac{\pi}{3}\right)=sin\left(\dfrac{2\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)

1 tháng 5 2022

Chọn D 

1 tháng 5 2022

D

NV
3 tháng 6 2020

\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)

\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)

\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)

\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)

Bạn ghi ko đúng đề

3 tháng 6 2020

cos4x - sin4x + sin2x

11 tháng 5 2021

Bài 1 :

Ta có : a thuộc góc phần tư thứ II .

=> Cos a < 0

- Ta lại có : \(\left\{{}\begin{matrix}sina=\dfrac{1}{3}\\sin^2a+cos^2a=1\end{matrix}\right.\)

\(\Rightarrow cosa=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=-\dfrac{2\sqrt{2}}{3}\)

Bài 2 :

Ta có : \(F=\dfrac{\cos x.\tan x}{\sin^2x-\cot x.\cos x}=\dfrac{\cos x.\dfrac{\sin x}{\cos x}}{\sin^2x-\dfrac{\cos x}{\sin x}.\cos x}\)

\(=\dfrac{\sin x}{\sin^2x-\dfrac{\cos^2x}{\sin x}}=\dfrac{1}{\sin x-\cot^2x}\)