Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)
A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)
A=7/10*(1/3-1/63)
A=7/10*20/63
A=2/9
\(\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-81^2\right)\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left[3^8-\left(3^4\right)^2\right]\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-3^8\right)\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right).0=0\)
\(\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-81^2\right)=\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-3^8\right)=\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right).0=0\)
A) =(5+(-15))+(9+(-19))+(-11)+(13+17)+(21+(-23))
=(-10)+(-10)+(-11)+20+(-2)
=((-10)+(-10))+(-11)+(-2)+20
=(-20)+(-11)+20+(-2)
=((-20)+20)+((-11)+(-2))
=0+(-13)=-13
B) doi ti !!!!! Tich cho mik nha
13 + 23 + 33 + 33 + 53 = a.a
155 = a.a
\(\left[{}\begin{matrix}-\sqrt{155}\\\sqrt{155}\end{matrix}\right.\)
a \(\in\) {\(-\sqrt{155}\); \(\sqrt{155}\)}
\(\frac{\frac{6}{13}-\frac{6}{23}+\frac{6}{33}-\frac{6}{43}}{\frac{5}{13}-\frac{5}{23}+\frac{5}{33}-\frac{5}{43}}\)
= \(\frac{6.\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{33}-\frac{1}{43}\right)}{5.\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{33}-\frac{1}{43}\right)}\)
= \(\frac{6}{5}\)
k cho mình nhé
e,13 + 23 + 33 + 43 + 53
Áp dụng công thức: 13 + 23 + 33 +...+ n3 = \(\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
ta có: 13 + 23 + 33 + 43 + 53 = \(\left(\dfrac{5.\left(1+5\right)}{2}\right)^2\) = 152 = 225
=
`+`
`1^3+2^3`
`=1+8`
`=9`
`1^5+2^3+3^3`
`=1+8+27`
`=9+27`
`=36`
`1^3+2^3+3^3`
`=1+8+27`
`=9+27`
`=36`