Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{4}-\frac{1}{6}-\frac{a}{b}=\frac{1}{2}\)
\(\frac{7}{12}-\frac{a}{b}=\frac{1}{2}\)
\(\frac{a}{b}=\frac{7}{12}-\frac{1}{2}\)
\(\frac{a}{b}=\frac{1}{12}\)
b) \(\frac{a}{b}\times\frac{1}{4}\times\frac{2}{5}=\frac{1}{7}\)
\(\frac{a}{b}\times\frac{1}{10}=\frac{1}{7}\)
\(\frac{a}{b}=\frac{1}{7}:\frac{1}{10}\)
\(\frac{a}{b}=\frac{10}{7}\)
c) \(\frac{1}{3}:\frac{a}{b}=\frac{2}{3}:\frac{4}{3}\)
\(\frac{1}{3}:\frac{a}{b}=\frac{1}{2}\)
\(\frac{a}{b}=\frac{1}{3}:\frac{1}{2}\)
\(\frac{a}{b}=\frac{3}{2}\)
a) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{128}+\dfrac{1}{128}-\dfrac{1}{256}\)
\(=1-\dfrac{1}{256}\)
\(=\dfrac{255}{256}\)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{13.14}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}\)
\(=1-\dfrac{1}{14}\)
\(=\dfrac{13}{14}\)
c) \(\dfrac{3}{15.18}+\dfrac{3}{18.21}+\dfrac{3}{21.24}+...+\dfrac{3}{87.90}\)
\(=3.\left(\dfrac{1}{15.18}+\dfrac{1}{18.21}+\dfrac{1}{21.24}+...+\dfrac{1}{87.90}\right)\)
\(=3.\left[\dfrac{1}{3}.\left(\dfrac{1}{15}-\dfrac{1}{18}\right)+\dfrac{1}{3}.\left(\dfrac{1}{18}-\dfrac{1}{21}\right)+\dfrac{1}{3}.\left(\dfrac{1}{21}-\dfrac{1}{24}\right)+...+\dfrac{1}{3}.\left(\dfrac{1}{87}-\dfrac{1}{90}\right)\right]\)
\(=3.\dfrac{1}{3}.\left(\dfrac{1}{15}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{24}+...+\dfrac{1}{87}-\dfrac{1}{90}\right)\)
\(=\dfrac{1}{15}-\dfrac{1}{90}\)
\(=\dfrac{6}{90}-\dfrac{1}{90}\)
\(=\dfrac{5}{90}=\dfrac{1}{18}\)
\(\frac{1}{3}-\frac{1}{2}+\frac{a}{b}=\frac{1}{2}\)
\(\frac{2}{6}-\frac{3}{6}+\frac{a}{b}=\frac{3}{6}\)
\(\frac{-1}{6}+\frac{a}{b}=\frac{3}{6}\)
\(\frac{a}{b}=\frac{3}{6}-\frac{-1}{6}\)
\(\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\)
#Hoq chắc - Cothanhkhe