K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6

\(\dfrac{1}{2}\left(x+1\right)\left(3-x\right)+x=3\)

\(\Leftrightarrow\left(\dfrac{1}{2}x+\dfrac{1}{2}\right)\left(3-x\right)-\left(3-x\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(\dfrac{1}{2}x+\dfrac{1}{2}-1\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(\dfrac{1}{2}x-\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(3-x\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy phương trình đã cho có tập nghiệm là \(S=\left\{3;1\right\}\).

$Toru$

\(\dfrac{1}{2}\left(x+1\right)\left(3-x\right)+x=3\)

=>\(\dfrac{1}{2}\left(3x-x^2+3-x\right)+x=3\)

=>\(\dfrac{1}{2}\left(-x^2+2x+3\right)+x=3\)

=>\(-x^2+2x+3+2x=6\)

=>\(-x^2+4x-3=0\)

=>\(\left(x-1\right)\left(x-3\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(P=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

28 tháng 3 2022

1) Hình như đề bị sai rồi bạn.

Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)

Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)

Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:

\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)

2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)

pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)

\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)

Nhận thấy \(\Delta'=6^2-3.5=21>0\)

Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)

6 tháng 9 2020

gấp gấp lắm nha mng ơi giúp mình với :(((((

Ta có: \(\dfrac{\left(x+3\right)\left(x-3\right)}{3}+2=x\left(1-x\right)\)

\(\Leftrightarrow\dfrac{x^2-9}{3}+\dfrac{6}{3}=\dfrac{3x\left(1-x\right)}{3}\)

\(\Leftrightarrow x^2-9+6=3x-3x^2\)

\(\Leftrightarrow x^2-3-3x+3x^2=0\)

\(\Leftrightarrow4x^2-3x-3=0\)

\(\Delta=9-4\cdot4\cdot\left(-3\right)=9+48=57\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{57}}{8}\\x_2=\dfrac{3+\sqrt{57}}{8}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3-\sqrt{57}}{8};\dfrac{3+\sqrt{57}}{8}\right\}\)

24 tháng 5 2021

`x=4=>B=(4+3)/(4-1)=7/3>0`

Vậy đề bài sai