
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-5x^2y+25xy^2-125y^3+5x^2y-25xy^2\)
\(=y^3+x^3\)
Thay \(x=-5;y=-3\) vào biểu thức trên, ta có:
\(\left(-3\right)^3+\left(-5\right)^3\)
\(=-27-125\)
\(=-152\)
Vậy giá trị của biểu thức trên là -152 tại x= -5, y= -3
b) \(a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^2\)
Thay a= -4, b=4 vào biểu thức trên, ta có:
\(\left(-4\right)^3+4^3-\left(-4+4\right)^2\)
\(=-64+64-0^2\)
\(=0\)
Vậy giá trị của biểu thức trên là 0 tại x= -4, y=4
Chúc bạn học tốt

\(a.126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)=126y^3+x^3-125y^3=x^3+y^3\)
Thay : \(x=-5;y=-3\) vào biểu thức trên , ta có :
\(-5^3-3^3=-152\)
\(b.a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)=a^3+b^3-\left(a-b\right)^3=a^3+b^3-a^3+3a^2b-3ab^2+b^3=2b^3+3ab\left(a-b\right)\)
Thay : \(a=-4;b=4\) vào biểu thức trên , ta có :
\(2.4^3+3.\left(-4\right).4\left(-4-4\right)=512\)

a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
Thay x = 2 vào A được:
\(=-3.2^2+7.2-4=-2\)
Vậy: Giá trị của A khi x = 2 là -2
==========
b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-125y^3\)
Thay x = -5 và y = -3 vào B được:
\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)
Vậy: Giá trị của B tại x = -5 và y = -3 là -152
==========
c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^3\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
Thay a = -4 và b = 4 vào C được:
\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)
Vậy: Giá trị của C tại a = -4 vào b = 4 là 512
a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot2^2+7\cdot2-4\)
\(=-12-4+14=-2\)
c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)
\(=128+192+192=512\)

\(126y^3+\left(x-5y\right)x^2+25y^2+5xy\)
\(=120y^3+xx^2-5x^2y+25y^2+5xy\)
\(=120y^3+x^3-5x^2y+25y^2+5xy\)
Chúc bạn học tốt!

\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\frac{5x+y}{x\left(x-5y\right)}+\frac{5x-y}{x\left(x+5y\right)}\right).\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\right)\left(x+5y\right)}.\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\frac{10}{x}\)
\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\frac{5x+y}{x\left(x-5y\right)}+\frac{5x-y}{x\left(x+5y\right)}\right)\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\left(x+4y\right)\right)}.\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\frac{10}{x}\)

Sửa đề: \(126y^3+\left(x-5y\right)\left(x^2+5xy+25y^2\right)\)
\(=126y^3+x^3-\left(5y\right)^3\)
\(=x^3+126y^3-125y^3=x^3+y^3\)
Thay x=5 và y=3 vào biểu thức, ta được:
\(x^3+y^3=5^3+3^3=125+27=152\)
Để giải bài toán này, ta cần thay giá trị của \(x = 5\) và \(y = 3\) vào biểu thức và tính giá trị.
Biểu thức ban đầu là:
\(126 y^{2} + \left(\right. x - 5 y \left.\right) \left(\right. x^{2} + 25 y^{2} + 5 x y \left.\right)\)
Bước 1: Thay giá trị \(x = 5\) và \(y = 3\)
Thay \(x = 5\) và \(y = 3\) vào biểu thức:
\(126 \left(\right. 3 \left.\right)^{2} + \left(\right. 5 - 5 \left(\right. 3 \left.\right) \left.\right) \left(\right. \left(\right. 5 \left.\right)^{2} + 25 \left(\right. 3 \left.\right)^{2} + 5 \left(\right. 5 \left.\right) \left(\right. 3 \left.\right) \left.\right)\)
Bước 2: Tính các phần trong biểu thức
Vậy:
\(\left(\right. 5 \left.\right)^{2} + 25 \left(\right. 3 \left.\right)^{2} + 5 \left(\right. 5 \left.\right) \left(\right. 3 \left.\right) = 25 + 225 + 75 = 325\)
Bước 3: Thay tất cả vào biểu thức
Biểu thức trở thành:
\(1134 + \left(\right. - 10 \left.\right) \times 325\)\(1134 - 3250 = - 2116\)
Kết luận:
Kết quả sau khi tính toán là \(- 2116\)