K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

1+2+3+4+5+...+99

Có số số hạng là :

(99-1):1+1=99 ( số hạng )

Tổng của S là : 

(99+1)x99:2=4950

17 tháng 10 2016

Số số hạng là:

\(\left(99-1\right):1+1=99\left(số\right)\)

S có giá trị là:

\(\left(99+1\right).99:=4950\)

20 tháng 12 2015

Ta có:3S=1.2.3+2.3.3+...99.100

=1.2.(3-0)+2.3.(4-1)+...+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100

=99.100.101

=>S=99.100.101:3(tự tính)

S = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99

S = (1 - 3 + 3^2 - 3^3) + ... + (3^96 - 3^97 + 3^98 - 3^99 )

S = (-20) + (-20) +...+ (-20)   (24 số -20)

S = (-20).24 chia hết cho -20

=> đpcm

14 tháng 4 2019

Câu hỏi của Nguyễn Dương - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo.

10 tháng 8 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

     \(=1-\frac{1}{100}=\frac{99}{100}\)

15 tháng 12 2017

Cấu a:G/s các số hạng đề là dương

số số hạng của dãy là :(100-1):1+1=100 số

ta thấy 2 số liền kề nhau có tổng =1

==> có 100:2=50 cặp 

==> tổng là 1x50=50

câu 2 bạn lầm giống câu 1

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

28 tháng 1 2016

ghi ra rồi tui bấm

khôn vừa vừa thôi chớ

19 tháng 2 2018

S1=1+2+3+...+999

Số số hạng S1= (999-1):1+1=999(số hạng)

tổng S1= \(\left(999+1\right)+\left(998+2\right)+...+\left(499+501\right)+500\)

\(=\left(999+1\right).499+500\)

\(=499500\)

19 tháng 2 2018

S2=1-2+3-4+...+99-100+101

=(1-2)+(3-4)+...+(99-100)+101

=(-1)+(-1)+...+(-1)+101

=(-1).50+101

=(-50)+101

=51

4 tháng 10 2022

ai bt tự làm

 

15 tháng 4 2023

ngu tự chịu

DD
31 tháng 8 2021

\(S=1\times2+2\times3+3\times4+...+99\times100\)

\(3\times S=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+99\times100\times\left(101-98\right)\)

\(=1\times2\times3+2\times3\times4-1\times2\times3+3\times4\times5-2\times3\times4+...+99\times100\times101-98\times99\times100\)

\(=99\times100\times101\)

\(S=\frac{99\times100\times101}{3}\)