Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/ 7.8 + 1/ 8.9 + 1/ 9.10
=> A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10
=> A = 1 - 1/10 = 9/10
Vậy A = 9/10
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10
A = 1 - 1/10 = 9/10
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Đây là tính chứ chứng minh cái gì ?
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Ta có:
\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
a, A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 + 10.11
= (1.2 + 2.3) + (3.4 + 4.5) + (5.6 + 6.7) + (7.8 + 8.9) + (9.10 + 10.11)
= 2( 1 + 3) + 4( 3 + 5) + 6( 5 + 7) + 8 ( 7 + 9) + 10( 9 + 11)
= 2.4 + 4.8 + 6.12 + 8.16 + 10.20 = 2.2.2 + 2.4.4 + 2.6.6 + 2.8.8 + 2.10.1
b,tương tự nhé
\(M=\frac{1}{9.10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\right)=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
Ta có: A = 1.2 + 2.3 + 3.4 + 4.5 +....+ 98.99
⇒⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 +....+ 98.99.3
⇒⇒ 3A = 1.2.3 + 2.3(4-1) + 3.4(5-2) + 4.5(6-3) +.....+ 98.99(100-97)
⇒⇒ 3A = 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 + ....+ 98.99.100 - 98.99.97
⇒⇒ 3A = 98.99.100
⇒⇒ A = 98.99.100398.99.1003 = 323400
b, tự giải nhé
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{13\cdot14}+\frac{1}{14\cdot15}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{2}-\frac{1}{15}\)
\(=\frac{13}{30}\)