Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*định lý Py-ta-go:
trong tam giác vuông, tổng bình phương hai cạnh góc vuông bằng bình phương của cạnh huyền
*BĐT tam giác:
trong một tam giác bất kỳ, tổng độ dài 2 cạnh luôn lớn hơn độ dài cạnh còn lại
*các trường hợp bằng nhau của tam giác:
+ trường hợp bằng nhau thường của tam giác
+ cạnh - cạnh - cạnh
+ cạnh - góc - cạnh
+góc - cạnh - góc
- Trường hợp bằng nhau đặc biệt của tam giác
+ cạnh huyền - góc nhọn
+ cạnh góc vuông - góc nhọn kề
+ 2 cạnh góc vuông
+ cạnh huyền - cạnh góc vuông
a)Định lý Pi-ta-go
* Trong 1 tam giác vuông: bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông
VD: \(\Delta ABC:\)vuông tại A
Ta có BC2 = AB2 + AC2
b) Bất đẳng thức trong tam giác
*Định lý. Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài hai cạnh còn lại
A B C
GT : ∆ ABC
KL : AB +AC > BC
AB + BC >AC
AC + BC > AB
Để x-y đạt GTLN thì: x lớn nhất và y nhỏ nhất
=>x=11;y=-89
Vậy GTLN của x-y là 11-(-89)=100
Để x-y đạt GTNN thì : x nhỏ nhất và y lớn nhất
=>x=-2;y=1
Vậy GTNN của x-y là -2-1=-3
câu 1
=> x+1/2+x+1/3+x+1/4-x-1/5-x-1/6=0
=> (x+x+x-x-x)+(1/2+1/3+1/4-1/5-1/6)=0
=> x+43/60=0
=> x = -43/60
câu dưới làm tương tự bạn nhé!
Ta có : 2x - 1 - 3.2x = -88
<=> -2.2x - 3.2x = -88
<=> 2x(-2 - 3) = -88
<=> 2x . -5 = -88
=> 2x = -88 : (-5)
=> 2x =
Bài 2:
a: \(3B=3+3^2+3^3+...+3^{90}\)
\(\Leftrightarrow2B=3^{90}-1\)
hay \(B=\dfrac{3^{90}-1}{2}\)
b: \(B=\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{84}\left(1+3+3^2+3^3+3^4+3^5\right)\)
\(=384\cdot\left(1+3^6+...+3^{84}\right)⋮52\)