\(1^2+2^2+3^3+4^2+...+100^2\)các bạn giải hộ mình câu này nhé, mình cám ơn

 

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2022

ccccccccccccccccccccccccccc

11 tháng 3 2022

có 10 cây cau trồng thành 5 hàng mỗi hàng có 4 cây ????

4 tháng 4 2018

1/2^2>1/2.3;1/3^2>1/3.4;......;1/9^2>1/9.10

suy ra  S > 1/2.3+1/3.4+......+1/9.10

            S> 1/2-1/3+1/3-1/4 +.....+1/9-1/10

            S> 1/2-1/10=2/5

Vay 2/5 < S

5 tháng 4 2018

Vậy còn S < \(\frac{8}{9}\)thì sao, bạn quên chưa chứng minh rồi

30 tháng 7 2015

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x\left(x+1\right):2}=1\frac{1991}{1993}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{x\left(x+1\right)}=1-1\frac{1991}{1993}=\frac{1991}{1993}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{1991}{1993}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{1993}:2=\frac{1991}{3986}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{1991}{3986}=\frac{1}{1993}\)

=> x + 1 = 1993

=> x = 1993 - 1

=> x = 1992

8 tháng 7 2016

chị ra tay giải cho đứa em cùng tên

50% = 1/2

x/2+2x/3 = x+4

(3x+4x)/6 =x +4

7x/6 - x =4

x/6 = 4

x = 24

10 tháng 5 2018

\(\frac{x-12}{3}=\frac{x+1}{4}\)

=>(x-12).4=(x+1)*3

    4x-48=3x+3

    4x-3x=48+3

    x=51

10 tháng 5 2018

(x-12)/3=(x+1)/4

(x-12)*4=(x+1)*3

x*4-12*4=x*3+1*3

4x-48=3x+3

4x-3x=3+48

x=51

21 tháng 2 2018

Câu a sai đề hay sao ấy
b) Không tối giản đâu nhé, cả tử và mẫu đều chia hết cho 2

21 tháng 2 2018

bạn ơi nhưng cô giáo cho đề mk thế. bạn giải giùm mk với mai mk phải nộp rồi.

18 tháng 4 2016

\(\frac{1}{3^2}<\frac{1}{3.4}\)

\(\frac{1}{4^2}<\frac{1}{4.5}\)

\(\frac{1}{5^2}<\frac{1}{5.6}\)

\(...\)

\(\frac{1}{100^2}<\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{101}\)

Mà \(\frac{1}{3}<\frac{1}{2}\) nên \(\frac{1}{3}-\frac{1}{101}<\frac{1}{2}\)

hay \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2}\)

17 tháng 4 2016

Đặt A=1/3^2+1/4^2+1/5^2+...+1/100^2

Suy raA<1/2*3+1/3*4+1/4*5+..+1/99*100

A<1/2-1/100<1/2

Ta có điều phải chứng minh.

5 tháng 8 2016

\(\frac{-5}{3}-\left(\frac{4}{5}-\frac{1}{2}\right)-\left|\frac{3}{4}-\frac{5}{2}+\frac{1}{3}\right|\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left|\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right|\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left(\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right)\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\frac{3}{4}+\frac{5}{2}-\frac{1}{3}\)

\(=\left(\frac{-5}{3}-\frac{1}{3}\right)+\left(\frac{1}{2}+\frac{5}{2}\right)-\left(\frac{4}{5}+\frac{3}{4}\right)\)

\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)

\(=-2+3-\frac{31}{20}\)

\(=1-\frac{31}{20}=\frac{-11}{20}\)

6 tháng 8 2016

\(\frac{-5}{3}-\left(\frac{4}{5}-\frac{1}{2}\right)-\left|\frac{3}{4}-\frac{5}{2}+\frac{1}{3}\right|\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left|\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right|\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left(\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right)\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\frac{3}{4}+\frac{5}{2}-\frac{1}{3}\)

\(=\left(\frac{-5}{3}-\frac{1}{3}\right)+\left(\frac{1}{2}+\frac{5}{2}\right)-\left(\frac{4}{5}+\frac{3}{4}\right)\)

\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)

\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)

\(=1-\frac{31}{20}=\frac{-11}{20}\)